
CS135 Tutorial 04 Page 1 of 6

CS135 Tutorial 04

CS135 Tutorial 04 Page 2 of 6

Goals
• Apply the design recipe!
• Use the listof-X-template!
• Write lots of list functions!
• Illustrate bottom-up development; talk about top-down development.

CS135 Tutorial 04 Page 3 of 6

Top-Down vs. Bottom-up
 Top-Down Bottom-up

Advantages

• Pretty sure you’ll develop the
“right” helper functions.

• Might be able to start even if you
don’t have a clear vision for
solving the entire problem.

• Can test as you go.

Disadvantages

• Hard to test until near the end,
developing the “bottom” helper
functions.

• Might develop helper functions
you don’t actually need.

• Need a clear vision for the entire
solution.

CS135 Tutorial 04 Page 4 of 6

Design Recipe
Module 04 Slide 06:

1. Write a draft of the purpose statement
2. Write Examples (by hand, then using check-expect)
3. Write Definition Header & Contract
4. Finalize the purpose with parameter names
5. Write Definition Body
6. Write Tests

CS135 Tutorial 04 Page 5 of 6

Caesar Cipher
Given a string, text, and a natural number, shift, write a function (encrypt
text shift) that produces a new string encrypted using the Caesar cipher. A
Caesar cipher replaces each letter in the text with a letter that is shift letters
away from it in the alphabet.

All characters in text must be from the alphabet A-Z (upper case letters) plus
space. Space is considered to be the next character after Z.

Note: The Caesar cipher is a well-known encryption method, but it is not secure and can be easily
hacked. If you would like to learn more, consider taking CS 458: Computer Security and Privacy.

CS135 Tutorial 04 Page 6 of 6

CQ1: Wrapper Functions
Which of the functions we developed are “wrapper functions”?
1. (define (encrypt text shift)

 (list->string (encrypt/lst shift (string->list text))))

2. (define (encrypt/lst n loc)

 (cond [(empty? loc) empty] ...

3. (define (encrypt/char n ch)

 (first (drop n (drop-until ch alpha2))))

4. (define (drop-until ch loc)

 (cond [(empty? loc) empty] ...

5. (define (drop n loc)

 (cond [(= n 0) loc] ...

A. All of them
B. None of them
C. 2, 4, 5
D. 1, 2
E. 1, 3

