
CS135 Tutorial 07 Page 1 of 13

CS135 Tutorial 07

CS135 Tutorial 07 Page 2 of 13

Binary Trees
In class we introduced binary trees with the following data-definition
(define-struct node (key left right))
;; A Node is a (make-node Nat BT BT)

;; A binary tree (BT) is one of:
;; * empty
;; * Node

Today:
• Recap on BT and BST
• Use the template to build functions for them
• Introduce the definition of balance
• Determine whether an existing tree is balanced
• Build a balanced tree

CS135 Tutorial 07 Page 3 of 13

Binary Tree Template
We also used that data definition to come up with bt-template
;; bt-template: BT →Any
(define (bt-template bt)

(cond
[(empty? bt) ...]
[(node? bt) (... (node-key bt)

 (bt-template (node-left bt))
 (bt-template (node-right bt)))]))

CS135 Tutorial 07 Page 4 of 13

bt-size
Write a function bt-size to count the number of nodes in a binary tree.
Let’s use the template!!!

CS135 Tutorial 07 Page 5 of 13

Binary Search Tree (BST)
We also introduced binary search trees with the following data definition:
;; A Binary Search Tree (BST) is one of:
;; ⋆ empty
;; ⋆ a Node

(define-struct node (key left right))
;; A Node is a (make-node Nat BST BST)
;; Requires: key > every key in left BST
;; key < every key in right BST

CS135 Tutorial 07 Page 6 of 13

Count-range
Write a function, (count-range bst lo hi).
It produces the number of keys in [lo, hi] –
between lo and hi, inclusive.

For the BST shown:

(check-expect (count-range bst 0 50) 7)
(check-expect (count-range bst 11 25) 3)
(check-expect (count-range bst 8 8) 1)
(check-expect (count-range bst 11 13) 0)

Use the ordering property of BSTs.

10
5

8
20

6
14 25

CS135 Tutorial 07 Page 7 of 13

Balanced Binary Trees
• In class we’ve also commented that sometimes there are advantages to a

“balanced” binary tree – especially when searching a BST
• There are several definitions of “balanced”. Here’s one:

• A binary tree is balanced if:

o The number of nodes in the left and the right subtrees differ by at most 1
o Both subtrees are also balanced.
o An empty tree is balanced.

CS135 Tutorial 07 Page 8 of 13

Balanced BST Data Definition
(define-struct node (key left right)
;; A Node is a (make-node Nat BalBST BalBST)
;; requires: all keys in left < key
;; all keys in right > key
;; |(# nodes in left) – (# nodes in right)| <= 1

;; A balanced binary tree (BalBST) is one of:
;; * empty
;; * Node

CS135 Tutorial 07 Page 9 of 13

(balanced? bt)
• A binary tree is balanced if:

o The number of nodes in the left and the right subtrees differ by at most 1
o Both subtrees are also balanced.
o An empty tree is balanced.

We are not checking if the BST ordering property holds.

(check-expect (balanced? empty) ...)

(check-expect (balanced? (make-node 10 empty empty))
 ...)

10
5

CS135 Tutorial 07 Page 10 of 13

(check-expect
 (balanced?
 (make-node 10
 (make-node 5 empty (make-node 8 empty empty))
 empty))
 ...)
(check-expect
 (balanced?
 (make-node 10
 (make-node 5 empty (make-node 8 empty empty))
 (make-node 20 empty empty)))
 ...)
(check-expect
 (balanced?
 (make-node 10
 (make-node 5 empty (make-node 8
 (make-node 6 empty empty) empty))
 (make-node 20 (make-node 14 empty empty)
 (make-node 25 empty empty))))
 ...)

10
5

8

10
5

8

20

10
5

8
20

6
14 25

CS135 Tutorial 07 Page 11 of 13

Building balanced binary search trees
Given a sorted list of number, build a balanced binary search tree.

(define-struct node (key left right))

;; (build-bal-bst slon) builds a balanced binary search tree from slon.
;; build-bal-bst: (listof Num) -> BalBST
;; requires: slon is sorted in increasing order
(define (build-bal-bst slon) ...)

(check-expect (build-bal-bst empty) empty)
(check-expect (build-bal-bst (list 1)) (make-node 1 empty empty))
(check-expect (build-bal-bst (list 1 2 3 4 5 6))
 (make-node 4
 (make-node 2 (make-node 1 empty empty) (make-node 3 empty empty))
 (make-node 6 (make-node 5 empty empty) empty)))

CS135 Tutorial 07 Page 12 of 13

Required helper functions
;; (nth-elem lst n) produces the nth element in lst (counting from 0).
;; nth-elem: (listof X) Nat -> X
(define (nth-elem lon n)
 (cond [(zero? n) (first lon)]
 [else (nth-elem (rest lon) (sub1 n))]))

;; (take lon n) produces a list from the first n elements f lst.
;; take: (listof X) Nat -> (listof X)
(define (take lon n)
 (cond [(zero? n) empty]
 [else (cons (first lon) (take (rest lon) (sub1 n)))]))

;; (drop lon n) produces a list from the elements after the first n+1 elements
(define (drop lon n)
 (cond [(zero? n) (rest lon)]
 [else (drop (rest lon) (sub1 n))]))

CS135 Tutorial 07 Page 13 of 13

Required helper functions
(define lst (list 0 1 2 3))

(check-expect (nth-elem lst 0) 0)
(check-expect (nth-elem lst 1) 1)
(check-expect (nth-elem lst 3) 3)
(check-expect (take lst 0) empty)
(check-expect (take lst 1) (list 0))
(check-expect (drop lst 0) (list 1 2 3))
(check-expect (drop lst 1) (list 2 3))
(check-expect (drop lst 3) empty)

(check-expect (append (take lst 0) (list (nth-elem lst 0)) (drop lst 0)) lst)
(check-expect (append (take lst 1) (list (nth-elem lst 1)) (drop lst 1)) lst)
(check-expect (append (take lst 2) (list (nth-elem lst 2)) (drop lst 2)) lst)
(check-expect (append (take lst 3) (list (nth-elem lst 3)) (drop lst 3)) lst)

