
CS135 Tutorial 10 Page 1 of 7 

CS135 Tutorial 10 
Higher Order Functions, Lambda 



CS135 Tutorial 10 Page 2 of 7 

Perfect Squares 
Write a function, (perfect-squares lon), that consumes a list of numbers and 
produces a list of the perfect squares it contains (maintaining the original order). 
 
(check-expect (perfect-squares (list 1 2 3 4 5 6 7 8 9 10)) (list 1 4 9)) 
 
Recall that a perfect square is a number, n, where n=i2 for some integer i. 
 
Restrictions:   
Ø Use only implicit recursion (i.e. you can’t write a function that applies itself, 

either directly or via mutual recursion). 



CS135 Tutorial 10 Page 3 of 7 

Perfect Squares Revisited 
Write a function, (generate-perfect-squares lo hi), that generates a list in 
ascending order of perfect squares between lo and hi, inclusive. 
 
Restrictions:   
Ø Use only implicit recursion (i.e. you can’t write a function that applies itself, 

either directly or via mutual recursion). 
 



CS135 Tutorial 10 Page 4 of 7 

Simplify 
We’ve studied arithmetic expressions several times.  In M14 we represented them 
with quoted lists, so we could do (eval '(+ 2 (* 3 4) (+ 5 6))) to get 25. 
 
In A07 we added identifiers such as 'x, 'y, and 'z to our expressions, getting the 
values from a symbol table.  Combine these ideas into a new data definition: 
 
;; An Op is (anyof '+ '*) 
 
;; An Arithmetic Expression (AExp)  
;; is one of: 
;; * Num 
;; * Sym 
;; * (cons Op (listof AExp)) 
 

Write (simplify ex) which 
simplifies an arithmetic expression. 
 
Look for opportunities to use 
filter, map, etc. as well as 
lambda. 



CS135 Tutorial 10 Page 5 of 7 

Simplify: Examples 
(check-expect (simplify 1) 1) 
(check-expect (simplify 'x) 'x) 
 
;; collapse constants into a single value 
(check-expect (simplify '(+ 1 2 3 4)) 10) 
(check-expect (simplify '(* 1 2 3 4)) 24) 
(check-expect (simplify '(+ 1 (* 2 3) 4 (* 5 6))) 41) 
 
;; leave other parts of the expression alone 
(check-expect (simplify '(+ x y z)) '(+ x y z)) 
(check-expect (simplify '(* x y z)) '(* x y z)) 
 
;; move constants to the front of the expression 
(check-expect (simplify '(+ 1 (* x y) z (* 5 6))) '(+ 31 (* x y) z)) 
(check-expect (simplify '(+ 1 (* x y (+ 2 3)) z (* 5 6))) '(+ 31 (* 5 x y) z)) 



CS135 Tutorial 10 Page 6 of 7 

Strategy 
If we develop templates from the data definition and rename for our problem: 
 
(define (simplify ex) 
  (cond [(number? ex) ...] 
        [(symbol? ex) ...] 
        [(cons? ex) (simplify/lst (first ex) 
                                  (rest ex))])) 
 
(define (simplify/lst op lox) 
  (cond [(empty? lox) ...] 
        [else (... (simplify (first lox)) 
                   (simplify/lst op (rest lox)))]))  



CS135 Tutorial 10 Page 7 of 7 

Strategy 
Ø Given an expression, start by simplifying all the subexpressions.  That is, 

'(+ 1 
    (* x y (+ 2 3)) 
    z 
    (* 5 6)) 

=> 

'(+ 1 
    (* 5 x y) 
    z 
    30) 

 
Ø Pass the operator and simplified arguments to a helper function, 

simplify/lst. 
Ø Partition the list of arguments into a list of numbers and a list of non-numbers. 
Ø Collapse the list of numbers into one number (watch out for empty!). 
Ø Combine operator, number, and non-numeric expressions to produce the new 

expression. 


