
CS135 Tutorial 10 Page 1 of 17

CS135 Tutorial 10
Higher Order Functions, Lambda

CS135 Tutorial 10 Page 2 of 17

Eval Recap
We’ve studied arithmetic expressions several times. In M14 we represented them
with lists, so we could do
(eval (list + 2 (list * 3 4) (list + 5 6))) to get 25.

;; An opnode is a (list (Num Num -> Num) (listof AExp))
;; An AExp is (anyof Num opnode)

;; (eval ex) evaluates the arithmetic expression ex.
;; eval: AExp → Num
(define (eval ex)
 (cond [(number? ex) ex]
 [(cons? ex) (my-apply (first ex) (rest ex))]))

CS135 Tutorial 10 Page 3 of 17

Eval Recap Cont.
;; (my-apply op exlist) applies op to the list of arguments.
;; my-apply: Sym (listof AExp) → Num
(define (my-apply op args)
 (cond [(empty? args) (op)]
 [else (op (eval (first args)) (my-apply op (rest args)))]))

In my-apply, we explicitly recurse on the rest of the list to apply eval to each
element in the list. Can we replace this with implicit recursion before we call my-
apply?

CS135 Tutorial 10 Page 4 of 17

Updated eval
;; (eval ex) evaluates the arithmetic expression ex.
;; eval: AExp → Num
(define (eval ex)
 (cond [(number? ex) ex]
 [(cons? ex) (my-apply (first ex) (map eval (rest ex)))]))
;; (my-apply op exlist) applies op to the list of arguments.
;; my-apply: Sym (listof AExp) → Num
(define (my-apply op args)
 (cond [(empty? args) (op)]
 [else (op (first args)
 (my-apply op (rest args))]))

Now all my-apply does is use the operator, can we simplify it further with another
higher order functions?

CS135 Tutorial 10 Page 5 of 17

Updated my-apply cont.
;; (eval ex) evaluates the arithmetic expression ex.
;; eval: AExp → Num
(define (eval ex)
 (cond [(number? ex) ex]
 [(cons? ex) (my-apply (first ex) (map eval (rest ex)))]))

;; (my-apply op exlist) applies op to the list of arguments.
;; my-apply: Sym (listof AExp) → Num
(define (my-apply op args)
 (foldr op (op) args)]))

CS135 Tutorial 10 Page 6 of 17

Update Eval cont.
In M14 we took eval a step further by using quoted lists. However, this prevented
us from being able to store functions in our lists and we had to go back to
symbols.
How can we adapt my apply to this change?

CS135 Tutorial 10 Page 7 of 17

Update Eval cont.
;; (eval ex) evaluates the arithmetic expression ex.
;; eval: AExp → Num
(define (eval ex)
 (cond [(number? ex) ex]
 [(cons? ex) (my-apply (first ex) (map eval (rest ex)))]))

;; (my-apply op exlist) applies op to the list of arguments.
;; my-apply: Sym (listof AExp) → Num
(define (my-apply op args)
 (cond [(symbol=? op ‘+) (foldr + 0 args)]
 [(symbol=? op ‘*) (foldr * 1 args)]))

CS135 Tutorial 10 Page 8 of 17

Simplify
In A07 we also added identifiers such as 'x, 'y, and 'z to our expressions, getting
the values from a symbol table. Combine these ideas into a new data definition:

;; An Op is (anyof '+ '*)

;; An Arithmetic Expression (AExp)
;; is one of:
;; * Num
;; * Sym
;; * (cons Op (listof AExp))

Write (simplify ex) which
simplifies an arithmetic expression.

Look for more opportunities to use
filter, map, etc. as well as
lambda.

CS135 Tutorial 10 Page 9 of 17

Simplify: Examples
(check-expect (simplify 1) 1)
(check-expect (simplify 'x) 'x)

;; collapse constants into a single value
(check-expect (simplify '(+ 1 2 3 4)) 10)
(check-expect (simplify '(* 1 2 3 4)) 24)
(check-expect (simplify '(+ 1 (* 2 3) 4 (* 5 6))) 41)

;; leave other parts of the expression alone
(check-expect (simplify '(+ x y z)) '(+ x y z))
(check-expect (simplify '(* x y z)) '(* x y z))

;; move constants to the front of the expression
(check-expect (simplify '(+ 1 (* x y) z (* 5 6))) '(+ 31 (* x y) z))
(check-expect (simplify '(+ 1 (* x y (+ 2 3)) z (* 5 6))) '(+ 31 (* 5 x y) z))

CS135 Tutorial 10 Page 10 of 17

Eval -> Simplify
How can we update eval to meet the requirements for simplify?
(define (eval ex)
 (cond [(number? ex) ex]
 [(cons? ex) (my-apply (first ex) (map eval (rest ex)))]))

(define (my-apply op args)
 (cond [(symbol=? op ‘+) (foldr + 0 args)]
 [(symbol=? op ‘*) (foldr * 1 args)]))

CS135 Tutorial 10 Page 11 of 17

Eval-Simplify
How can we update eval to meet the requirements for simplify?
(define (simplify ex)
 (cond [(number? ex) ex]
 [(symbol? ex) ex]
 [(cons? ex) (simplify/lst (first ex) (map simplify (rest ex)))]))

(define (simplify/lst op simplified-args)
 (cond [(symbol=? op ‘+) (foldr + 0 simplified-args)]
 [(symbol=? op ‘*) (foldr * 1 simplified-args)]))

CS135 Tutorial 10 Page 12 of 17

Problems to fix
Ø Following our original definition, we map simplify on all the elements in our lists

which simplifies our expressions significantly
'(+ 1
 (* x y (+ 2 3))
 z
 (* 5 6))

=>

'(+ 1
 (* 5 x y)
 z
 30)

Ø Our current simplify/lst works on a list of just numbers!

CS135 Tutorial 10 Page 13 of 17

Problems to fix
(define (simplify ex)
 (cond [(number? ex) ex]
 [(symbol? ex) ex]
 [(cons? ex) (simplify/lst (first ex) (map simplify (rest ex)))]))

(define (simplify/lst op simplified-args)
 (local [(define only-nums (filter number? simplified-args))]
 (cond [(symbol=? op ‘+) (foldr + 0 only-nums)]
 [(symbol=? op ‘*) (foldr * 1 only-nums)])))

CS135 Tutorial 10 Page 14 of 17

Problems to fix
Ø Now we are completely ignoring the symbols and their expressions!
Ø We need to also get the non-numbers!
Ø Combine operator, number, and non-numeric expressions to produce the new

expression. Watch out for empty!

CS135 Tutorial 10 Page 15 of 17

Problems to fix
(define (simplify ex)
 (cond [(number? ex) ex]
 [(symbol? ex) ex]
 [(cons? ex) (simplify/lst (first ex) (map simplify (rest ex)))]))

(define (simplify/lst op simplified-args)
 (local [(define only-nums (filter number? simplified-args))
 (define non-nums (filter (lambda (x) (not (number? x)))
 simplified-args))]
 (cond [(symbol=? op ‘+) (foldr + 0 only-nums)]
 [(symbol=? op ‘*) (foldr * 1 only-nums)])))

CS135 Tutorial 10 Page 16 of 17

How do we combine them?
 Contains Numbers?

Yes No C
ontains Sym

bols?

Yes

'(+ 5 x (* 2 3) 10)
=>
'(+ 20 x)

'(+ x y (* 2 z))
=>
'(+ x y (* 2 z))

N
o

'(+ 1 2 3 4)
=>
10

'(+)
=>
0

CS135 Tutorial 10 Page 17 of 17

How do we combine them?
(define (simplify/lst op simplified-args)
 (local [(define only-nums (filter number? simplified-args))
 (define non-nums (filter (lambda (x) (not (number? x)))
 simplified-args))
 (define simplified-num (cond [(symbol=? op ‘+)
 (foldr + 0 only-nums)]
 [(symbol=? op ‘*)
 (foldr * 1 only-nums)]))]
 (cond [(empty? non-nums) simplified-num]
 [(empty? only-num) (cons op non-nums)]
 [else (cons op (cons simplified-num non-nums))])))

