CS135 Tutorial 11

Generative Recursion, Graphs

CS135 Tutorial 11 Page 1 of 16

Finding Paths

» Consider this graph and finding a path from "Ato 'H. There are three such

paths.
_ ?
» Which one will (ind-path "A "H gZ) produce" "CCA (C D E))

Co (B (H KD
€ O
A \ (0 (F 1))
CE (K ND)
(F (K L)
H O
(J (BY)
K O
-/' (L M)
M (HD)
E (N CHO)D

CS135 Tutorial 11 Page 2 of 16

Find-Path - lecture version T’ Nw

(define (find-path orig dest g) ./'\7
(cond [(symbol=? orig dest) (list dest)]

[else (local [(define nbrs (neighbours orig g))

(define ?path (find-path/list nbrs dest @)1 |00 &, o,
(cond [(false? ?path) false] (B (H K))
ig ? C O
[else (cons orig ?path)]))]1)) R
(E (K NDD
(define (find-path/11ist nbrs dest g) (F (K L))
(cond [(empty? nbrs) false] E?Eé;)
[else (local [(define ?path (find-path (first nbrs) dest g))] K O)
(cond [(false? ?path) (L D
(find-path/11ist (rest nbrs) dest g)] E':l' Eﬂgg))
[else ?path]))1))

CS135 Tutorial 11 Page 3 of 16

What kind of recursion?

Simple: In recursive (define (foo x)

applications, args are either ... (foo (one-step-closer x)) ...)
unchanged or one step closer
to a base case in the data def.

Accumulative: One or more (define (foo x acc)

parameters that collect (cond [(all-done? x) acc]
information that is the answer [else (foo (one-step-closer x)
at the end. Based on data def. (op acc)) 1))

Mutual: Two (or more) (define (foo x) ... (bar (opl x)) ...)

functions call each other (define (bar y) ... (foo (op2 y)) ...)

based on data def.

Generative: Arguments are (define (foo x) ... (foo (arbitrary-calc x))...)

calculated without a data def.

CS135 Tutorial 11 Page 4 of 16

Shortest Path Strategy
» Suppose we’d like the shortest path. That’s
not uncommon: A { \

“ Google Maps wouldn’t be very popular if
the route from Waterloo to Toronto went

via Winnipeg.
¢ Booking an airline flight that took three
puddle-jumpers instead of 1 direct flight. 0/'
T E

» How could we go about finding the shortest
path?
*» Assume we have an acyclic graph to keep it simpler.

CS135 Tutorial 11 Page 5 of 16

Strategy 2: Extend all paths by 1 until...

(extend-paths "(C(A)) g2) Co oF ok

=> (list (list 'C 'A) D M
(list 'D 'A) 5 \ aQ
(list '"E 'A)) K T

(extend-paths

=> (list (list '
(list '
(list '
(list '

t_n'nZK
DDI‘I‘Im

(extend- paths ((A)) g2) g2)

'‘A)

'A)
'A)
"A))

E §>QN

CS135 Tutorial 11

Page 6 of 16

Strategy 2: Extend all paths by 1 until...

(extend-paths
(extend-paths

Cﬂ. ol
A o AM
(extend-paths "(CCA)) g2) g2) g2) a
=> (1ist (list 'B 'J 'D 'A) 7K H
(list 'K 'F "A)
'F e
N E S——————d,

'D
(list 'L 'D "A)
(Iist 'H 'N "E "A))

(extend-paths
(extend-paths

Ce F_ L
AL Y
(extend-paths A \ %
(extend-paths '((A)) g2) g2) g2) g2) N *H
—> (list (list 'M 'L 'F 'D 'A) \//'E
(list 'H 'B 'J 'D 'A) \ o— 7 B
(list 'K 'B 'J 'D 'A)) e N

CS135 Tutorial 11 Page 7 of 16

Data Definitions

;3 A Path 1s a (ne-listof Node)
;; Paths are a (listof Path)

CS135 Tutorial 11 Page 8 of 16

Strategy 1: Find all paths; take the shortest

;3 (findall-path orig dest g) finds all paths from orig to dest in g
;3 find-path: Node Node Graph -> Paths
(define (findall-paths orig dest g)
(cond [(symbol=? orig dest) (list (list dest))]
[else (local [(define nbrs (neighbours orig g))

(define paths (findall-paths/list nbrs dest g))]
(map (lambda (p) (cons orig p)) paths))]))

;3 (findall-paths/1ist nbrs dest g) produces all the paths from
- nbrs to dest in g
;3 find-path/1ist: (listof Node) Node Graph -> Paths

(define (findall-paths/list nbrs dest g)
(cond [(empty? nbrs) empty]

[else (append (fAndall-paths (first nbrs) dest g)
(findall-paths/list (rest nbrs) dest g))]))

CS135 Tutorial 11 Page 9 of 16

Strategy 1: Find all paths; take the shortest

;5 (shortest orig dest g) finds the shortest path from orig to
;; dest 1n g; empty i1f no path exists.
;3 Shortest: Node Node Graph -> (anyof Path false)
(define (shortest-path orig dest g)

(local [(define paths (fAndall-paths orig dest g))]

(cond [(empty? paths) false]
[else (foldl (lambda (p rror) (cond [(< (length p) (length rror)) p]
[else rror]))

(first paths) (rest paths))]))))

CS135 Tutorial 11 Page 10 of 16

Strategy 2: Extend all paths by 1 until...

(extend-paths "(CA)) g2)

=> (list (1list 'C 'A)
(list 'D 'A)
(list 'E "A))

C. .F P.L
74
A D A.M
o
<1. QQ
K o °H

=> (list (list '
(list '
(list '
(list '

MM =2 AN

O C©O m m

(extend-paths (list (list 'C 'A)

(list 'D 'A)
(list "E 'A)) g2)
‘A
‘A
‘A
A

E §>QN

CS135 Tutorial 11

Page 11 of 16

Strategy 2: Extend all paths by 1 until...

(extend-paths (list (1ist 'B 'A)

(list 'C 'A)
(list 'D 'A)) @ ze B<

produces how many paths?
A

CS135 Tutorial 11 Page 12 of 16

Strategy 2: Extend paths

;; (extend-paths paths dest g) extends each path in paths with the

;3 neighbours of the first node in the path.
;5 extend-paths: Paths Graph -> Paths
(define (extend-paths paths g)
(local [;; Extend one path
;5 extend-one-path: Path -> Paths
(define (extend-one-path path)
(local [(define nbrs (neighbours (first path) g))]
(map (lambda (n) (cons n path)) nbrs)))

;; Add the results of extending one path to
;; the list we're building up.
(define (handle-one-path path rror)

(append (extend-one-path path) rror))]

(foldl handle-one-path empty paths)))
CS135 Tutorial 11

Page 13 of 16

Strategy 2: A useful helper function

;3 (find pred? 1st) finds the first element in 1st that satisfies pred?.
;3 find: (X -> Bool) (listof X) -> (anyof false X)
(define (find pred? 1st)
(cond [(empty? 1st) false]
[(pred? (first 1st)) (fArst 1st)]
[else (find pred? (rest lst))]))

CS135 Tutorial 11 Page 14 of 16

Strategy 2: Keep on extending

;3 (shortest-path orig dest g) finds the shortest path from orig to dest
;5 1n g, or false i1f no such path exists.
;5 Shortest-path: Node Node Graph -> (anyof Path false)
(define (shortest-path orig dest g)
(local [; repeatedly extend each path with 1ts neighbours until
; a path to dest 1s found or paths becomes empty.
(define (repeat paths)
(local [(define ?path

(find (lambda (p) (symbol=? (first p) dest)) paths))]
(cons? ?path) (reverse ?path)]
(empty? paths) false]
[else (repeat (extend-paths paths g))]1)))]

(cond

(repeat (list (list orig)))))

CS135 Tutorial 11 Page 15 of 16

Summary

» Lots of algorithms benefit from a shortest-path

» The second approach (extending all paths one step at a time) is the more
common approach and is more efficient.

» The “Al” for a game (for example) uses a similar approach because you often
can’t search all the way to the end of the game.

We saw a couple of places where higher-order functions could be used easily.

CS135 Tutorial 11 Page 16 of 16

