
CS135 Tutorial 11 Page 1 of 16 

CS135 Tutorial 11 
Generative Recursion, Graphs 



CS135 Tutorial 11 Page 2 of 16 

Finding Paths 
Ø Consider this graph and finding a path from 'A to 'H.  There are three such 

paths. 
Ø Which one will (find-path 'A 'H g2) produce? (define g2 

  '((A (C D E)) 
    (B (H K)) 
    (C ()) 
    (D (F J)) 
    (E (K N)) 
    (F (K L)) 
    (H ()) 
    (J (B)) 
    (K ()) 
    (L (M)) 
    (M (H)) 
    (N (H)))) 

A

B

C

D

E

F

K H

J

L

M

N



CS135 Tutorial 11 Page 3 of 16 

Find-Path – lecture version 
 
 
(define (find-path orig dest g)  
  (cond [(symbol=? orig dest) (list dest)]  
        [else (local [(define nbrs (neighbours orig g))  
                      (define ?path (find-path/list nbrs dest g))]  
                (cond [(false? ?path) false]  
                      [else (cons orig ?path)]))])) 
 
(define (find-path/list nbrs dest g) 
  (cond [(empty? nbrs)  false]  
        [else (local [(define ?path (find-path (first nbrs) dest g))]  
                (cond [(false? ?path)  
                       (find-path/list (rest nbrs) dest g)]  
                      [else ?path]))])) 

A

B

C

D

E

F

K H

J

L

M

N

(define g2 
  '((A (C D E)) 
    (B (H K)) 
    (C ()) 
    (D (F J)) 
    (E (K N)) 
    (F (K L)) 
    (H ()) 
    (J (B)) 
    (K ()) 
    (L (M)) 
    (M (H)) 
    (N (H)))) 



CS135 Tutorial 11 Page 4 of 16 

What kind of recursion? 
Simple: In recursive 
applications, args are either 
unchanged or one step closer 
to a base case in the data def. 

(define (foo x)  
  ... (foo (one-step-closer x)) ...) 

Accumulative:  One or more 
parameters that collect 
information that is the answer 
at the end. Based on data def. 

(define (foo x acc) 
  (cond [(all-done? x) acc] 
        [else (foo (one-step-closer x)  
                   (op acc))])) 

Mutual:  Two (or more) 
functions call each other 
based on data def. 

(define (foo x) ... (bar (op1 x)) ...) 
(define (bar y) ... (foo (op2 y)) ...) 

Generative: Arguments are 
calculated without a data def. 

(define (foo x) ... (foo (arbitrary-calc x))...) 

 



CS135 Tutorial 11 Page 5 of 16 

Shortest Path Strategy 
Ø Suppose we’d like the shortest path.  That’s 

not uncommon: 
v Google Maps wouldn’t be very popular if 

the route from Waterloo to Toronto went 
via Winnipeg. 

v Booking an airline flight that took three 
puddle-jumpers instead of 1 direct flight. 

 
Ø How could we go about finding the shortest 

path? 
v Assume we have an acyclic graph to keep it simpler. 

A

B

C

D

E

F

K H

J

L

M

N



CS135 Tutorial 11 Page 6 of 16 

Strategy 2: Extend all paths by 1 until… 
(extend-paths '((A)) g2)  
=> (list (list 'C 'A)  
         (list 'D 'A)  
         (list 'E 'A)) 
 

 
(extend-paths  
   (extend-paths '((A)) g2) g2) 
=> (list (list 'K 'E 'A)  
         (list 'N 'E 'A)  
         (list 'F 'D 'A)  
         (list 'J 'D 'A)) 

 

A

B

C

D

E

F

K H

J

L

M

N

A

B

C

D

E

F

K H

J

L

M

N



CS135 Tutorial 11 Page 7 of 16 

Strategy 2: Extend all paths by 1 until… 
(extend-paths  
   (extend-paths  
      (extend-paths '((A)) g2) g2) g2) 
=> (list (list 'B 'J 'D 'A)  
         (list 'K 'F 'D 'A)  
         (list 'L 'F 'D 'A)  
         (list 'H 'N 'E 'A))  
(extend-paths  
   (extend-paths  
      (extend-paths  
         (extend-paths '((A)) g2) g2) g2) g2) 
=> (list (list 'M 'L 'F 'D 'A)  
         (list 'H 'B 'J 'D 'A)  
         (list 'K 'B 'J 'D 'A))  
 

A

B

C

D

E

F

K H

J

L

M

N

A

B

C

D

E

F

K H

J

L

M

N



CS135 Tutorial 11 Page 8 of 16 

Data Definitions 
;; A Path is a (ne-listof Node) 
;; Paths are a (listof Path) 



CS135 Tutorial 11 Page 9 of 16 

Strategy 1: Find all paths; take the shortest 
;; (findall-path orig dest g) finds all paths from orig to dest in g 
;; find-path: Node Node Graph -> Paths 
(define (findall-paths orig dest g)  
  (cond [(symbol=? orig dest) (list (list dest))]  
        [else (local [(define nbrs (neighbours orig g))  
                      (define paths (findall-paths/list nbrs dest g))] 
                (map (lambda (p) (cons orig p)) paths))])) 
 
;; (findall-paths/list nbrs dest g) produces all the paths from 
;;     nbrs to dest in g 
;; find-path/list: (listof Node) Node Graph -> Paths 
(define (findall-paths/list nbrs dest g) 
  (cond [(empty? nbrs)  empty]  
        [else (append (findall-paths (first nbrs) dest g) 
                      (findall-paths/list (rest nbrs) dest g))])) 



CS135 Tutorial 11 Page 10 of 16 

Strategy 1: Find all paths; take the shortest 
;; (shortest orig dest g) finds the shortest path from orig to 
;; dest in g; empty if no path exists. 
;; shortest: Node Node Graph -> (anyof Path false) 
(define (shortest-path orig dest g) 
  (local [(define paths (findall-paths orig dest g))] 
    (cond [(empty? paths) false] 
          [else (foldl (lambda (p rror) (cond [(< (length p) (length rror)) p] 
                                              [else rror])) 
                       (first paths) (rest paths))])))) 
 



CS135 Tutorial 11 Page 11 of 16 

Strategy 2: Extend all paths by 1 until… 
(extend-paths '((A)) g2)  
=> (list (list 'C 'A)  
         (list 'D 'A)  
         (list 'E 'A)) 
 

 
(extend-paths (list (list 'C 'A) 
                    (list 'D 'A) 
                    (list 'E 'A)) g2) 
=> (list (list 'K 'E 'A)  
         (list 'N 'E 'A)  
         (list 'F 'D 'A)  
         (list 'J 'D 'A))  

A

B

C

D

E

F

K H

J

L

M

N

A

B

C

D

E

F

K H

J

L

M

N



CS135 Tutorial 11 Page 12 of 16 

Strategy 2: Extend all paths by 1 until… 
 (extend-paths (list (list 'B 'A) 
                     (list 'C 'A) 
                     (list 'D 'A)) g) 
 
produces how many paths? 

A

B

C

Z

D



CS135 Tutorial 11 Page 13 of 16 

Strategy 2: Extend paths 
;; (extend-paths paths dest g) extends each path in paths with the 
;; neighbours of the first node in the path.   
;; extend-paths: Paths Graph -> Paths 
(define (extend-paths paths g) 
  (local [;; Extend one path 
          ;; extend-one-path: Path -> Paths  
          (define (extend-one-path path) 
            (local [(define nbrs (neighbours (first path) g))] 
              (map (lambda (n) (cons n path)) nbrs))) 
 
          ;; Add the results of extending one path to 
          ;; the list we're building up. 
          (define (handle-one-path path rror) 
            (append (extend-one-path path) rror))] 
           
    (foldl handle-one-path empty paths))) 



CS135 Tutorial 11 Page 14 of 16 

Strategy 2:  A useful helper function 
;; (find pred? lst) finds the first element in lst that satisfies pred?. 
;; find: (X -> Bool) (listof X) -> (anyof false X) 
(define (find pred? lst) 
  (cond [(empty? lst) false] 
        [(pred? (first lst)) (first lst)] 
        [else (find pred? (rest lst))])) 



CS135 Tutorial 11 Page 15 of 16 

Strategy 2: Keep on extending 
;; (shortest-path orig dest g) finds the shortest path from orig to dest 
;; in g, or false if no such path exists. 
;; shortest-path: Node Node Graph -> (anyof Path false) 
(define (shortest-path orig dest g) 
  (local [; repeatedly extend each path with its neighbours until 
          ; a path to dest is found or paths becomes empty. 
          (define (repeat paths) 
            (local [(define ?path 
                      (find (lambda (p) (symbol=? (first p) dest)) paths))] 
              (cond [(cons? ?path) (reverse ?path)] 
                    [(empty? paths) false] 
                    [else (repeat (extend-paths paths g))])))] 
     
    (repeat (list (list orig))))) 



CS135 Tutorial 11 Page 16 of 16 

Summary 
Ø Lots of algorithms benefit from a shortest-path 
Ø The second approach (extending all paths one step at a time) is the more 

common approach and is more efficient. 
Ø The “AI” for a game (for example) uses a similar approach because you often 

can’t search all the way to the end of the game. 
We saw a couple of places where higher-order functions could be used easily. 


