
05: Structures

Compound data M05 2/32

Sometimes data seems to always belong together. For example,

A point on a plane always has both x and y values.

A book is characterized by an ID, title, author, and genre.

Some other examples of compound data:

A complex number

z = a + bi

is built of a real part a and
an imaginary part b.

An employment record
might include the name, ID
number, and unit.
{

name: "James Bond"

ID: 007

unit: "MI6"

}

A labelled rooted binary
tree has a label, left-child
and right-child.

Structures M05 3/32

Racket represents the concept of compound data (data that has several parts) with
structures.

Think of a structure as a box representing one thing (such as the employee, James Bond)
but with several parts (fields) inside the box: name, ID, organizational unit, etc. Each of
those fields has a name.

We can have many structures, each representing a different employee – one structure for
James Bond, another structure for Bond’s boss, "M", etc.

Racket has a general mechanism, define-struct, that allows us to define custom structures
for employees or whatever structures the program needs.

Example: Rectangle M05 4/32

A positioned rectangle can be characterized by it’s top-left corner, width, height, and colour.

Define a structure for a rectangle with:

(define-struct rect (top left width height colour))

define-struct is a special form. It consumes the name of the structure (rect in our case)
and a list of field names.

define-struct creates a number of functions that
operate on the structure. The first is make-rect. We
can use it to make a rectangle corresponding to the
picture.

;; Example rectangles:
(define blue-rect (make-rect 3 1 3.5 2 'blue))
(define unit-rect (make-rect 1 0 1 1 'red))

width

height

top

left

Example: Consuming a Rectangle M05 5/32

Now we can write a function that consumes an entire rectangle structure and produces, say,
the area of the rectangle:

;; (rect-area r) produces the area of rectangle r.
(check-expect (rect-area blue-rect) 7)
(check-expect (rect-area unit-rect) 1)

;; rect-area: Rect -> Num
(define (rect-area r) ...)

Note that rect-area is consuming a single parameter, a structure, that includes all the
information about the rectangle.

Example: Consuming a Rectangle M05 6/32

(define-struct rect (top left width height colour))

Makes a total of 7 functions for us:

The constructor function, make-rect.

Five selector functions, one for each field: rect-top, rect-left, rect-width,
rect-height, and rect-colour.

A type predicate, rect?, which produces true if and only if its argument is a Rect.

We can use the selector functions to finish rect-area:

;; rect-area: Rect -> Num
(define (rect-area r)
(* (rect-width r)

(rect-height r)))

Example: Producing a Rectangle M05 7/32

Write (rect-move r dx dy) which moves rectangle r the distance given by dx and dy.

;; (rect-move r dx dy) produces a new rectangle that is the
;; same as r but offset or moved by dx and dy.
;; Examples:
(check-expect (rect-move blue-rect 1 2)

(make-rect 5 2 3.5 2 'blue))
(check-expect (rect-move unit-rect 1 1)

(make-rect 2 1 1 1 'red))

;; rect-move: Rect Num Num -> Rect
(define (rect-move r dx dy)
(make-rect (+ (rect-top r) dy)

(+ (rect-left r) dx)
(rect-width r)
(rect-height r)
(rect-colour r)))

Tracing rect-move M05 8/32

⇒ (rect-move (make-rect 1 2 3 (+ 2 2) 'red) 5 6)
⇒ (rect-move (make-rect 1 2 3 4 'red) 5 6)
⇒ (make-rect (+ (rect-top (make-rect 1 2 3 4 'red)) 6)

(+ (rect-left (make-rect 1 2 3 4 'red)) 5)
(rect-width (make-rect 1 2 3 4 'red))
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒ (make-rect (+ 1 6)
(+ (rect-left (make-rect 1 2 3 4 'red)) 5)
(rect-width (make-rect 1 2 3 4 'red))
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒ (make-rect 7
(+ (rect-left (make-rect 1 2 3 4 'red)) 5)
(rect-width (make-rect 1 2 3 4 'red))
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒ (make-rect 7 (+ 2 5)
(rect-width (make-rect 1 2 3 4 'red))
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒ (make-rect 7 7
(rect-width (make-rect 1 2 3 4 'red))
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒ (make-rect 7 7 3
(rect-length (make-rect 1 2 3 4 'red))
(rect-colour (make-rect 1 2 3 4 'red)))

⇒* (make-rect 7 7 3 4 'red)

Syntax and semantics M05 10/32

The special form
(define-struct sname (fname_1 ... fname_n))

defines the structure type sname with fields fname_1 to fname_n. It also automatically defines
the following primitive functions:

Constructor: make-sname

Selectors: sname-fname_1 ... sname-fname_n

Predicate: sname?

Sname (note the capitalization) may be used in contracts.

Substitution rules M05 11/32

(make-sname v_1 ... v_n) is a value.

The substitution rule for the i th selector is:

(sname-fname_i (make-sname v_1 ... v_i ... v_n)) ⇒ v_i.

Finally, the substitution rules for the new predicate are:

(sname? (make-sname v_1 ... v_n)) ⇒ true

(sname? V) ⇒ false for V a value of any other type.

Design Recipe of custom structures M05 12/32

A define-struct determines the names of the fields, but it does not tell us what the fields
are for. So we need to document these, by writing a data definition:

(define-struct rect (top left width height colour))
;; A Rect is a (make-rect Num Num Num Num Sym)
;; Requires: width and height are non-negative

The data definition tells us:

the type of each field, in a line resembling a contract;

as needed, any requirements for the field values.

The define-struct and the data definition are distinct from each other (one is for Racket;
one is for us) but belong together.

E
x.

1 1 Create a structure data type called book, with fields title, author, and year.

2 Use the constructor to create a constant of this type.

3 Use the selector functions to extract the individual values from the constant.

E
x.

2 Just after your (define-struct book ...) line, write a data definition for a Book.

Templates and data-directed design M05 13/32

One of the main ideas in CS135 is that the form of a program often mirrors the form of the
data.

A template is a general framework within which we fill in details for a specific function.

We create a template once for each new form of data, and then apply it many times in
writing functions that consume that type of data.

A template is derived from a data definition.

Structure templates M05 14/32

The template function for a structure simply selects all its fields, in the same order as listed
in the define-struct.

For example,

(define-struct rect (top left width height colour))
;; A Rect is a (make-rect Num Num Num Num Sym)
;; Requires: width and height are non-negative

;; rect-template: Rect -> Any
(define (rect-template r)
(... (rect-top r)

(rect-left r)
(rect-width r)
(rect-height r)
(rect-colour r)))

The structure definition,
data definition, and
template function are only
required once per file.

The ... indicates an
omission – a place where
code will be added when
the template is used for a
specific function.

Code may be needed at
other places in the
template as well.

Structure templates M05 15/32

Compare rect-template to rect-move:

;; rect-template: Rect -> Any
(define (rect-template r)
(... (rect-top r)

(rect-left r)
(rect-width r)
(rect-height r)
(rect-colour r)))

;; rect-move: Rect Num Num -> Rect
(define (rect-move r dx dy)
(make-rect (+ (rect-top r) dy)

(+ (rect-left r) dx)
(rect-width r)
(rect-height r)
(rect-colour r)))

Templates:

Give us a starting point for writing functions.

Remind us of the information we have available.

Remind us of the structure of the data.

Another Example: Inventory (1/4) M05 16/32

A program is needed to manage the inventory for a bulk food store. Each item in the
inventory has a description, a price, an a quantity available.

(define-struct inventory (desc price available))
;; An Inventory is a (make-inventory Str Num Nat)
;; Requires: price >= 0

;; inventory-template: Inventory -> Any
(define (inventory-template item)
(... (inventory-desc item)

(inventory-price item)
(inventory-available item)))

Another Example: Inventory (2/4) M05 17/32

(define-struct inventory (desc price available))
;; An Inventory is a (make-inventory Str Num Nat)

makes 5 functions:

A constructor: (make-inventory "dry lentils" 0.79 42)

Selector: (inventory-desc lentils) ⇒ "dry lentils"

Selector: (inventory-price lentils) ⇒ 0.79

Selector: (inventory-available lentils) ⇒ 42

Predicate: (inventory? lentils) ⇒ true;
(inventory? blue-rect) ⇒ false

Another Example: Inventory (3/4) M05 18/32

We can use the template to derive several functions:

;; inventory-template: Inventory -> Any
(define (inventory-template item)
(... (inventory-desc item)

(inventory-price item)
(inventory-available item)))

;; (total-value item) produces the cost of all our items.
;; Example:
(check-expect (total-value (make-inventory "rice" 5.50 6)) 33.00)

;; total-value: Inventory → Num
(define (total-value item)
(* (inventory-price item)

(inventory-available item)))

Another Example: Inventory (4/4) M05 19/32

We can use the template to derive several functions:

;; inventory-template: Inventory -> Any
(define (inventory-template item)
(... (inventory-desc item)

(inventory-price item)
(inventory-available item)))

;; (raise-price dollars item) produce item with price increased by dollars.
(check-expect (raise-price 0.49 (make-inventory "rice" 5.50 6))

(make-inventory "rice" 5.99 6))

;; raise-price: Num Inventory → Inventory
(define (raise-price dollars item)
(make-inventory (inventory-desc item)

(+ dollars (inventory-price item))
(inventory-available item)))

Nested Structures M05 20/32

Consider the following structure and data definitions:

(define-struct point (x y))
;; A Point is a (make-point Num Num)

(define-struct rect (topleft w h))
;; A Rect is a (make-rect Point Num Num)
;; Requires: w, h >= 0

How do you make a rectangle?

Some names have been
shortened to make room on
slides later.

Templates M05 21/32

What are the templates?

(define-struct point (x y))
;; A Point is a (make-point Num Num)

(define-struct rect (topleft w h))
;; A Rect is a (make-rect Point Num Num)
;; Requires: w, h >= 0

;; point-template: Point -> Any
(define (point-template p)
(... (point-x p)

(point-y p)))

;; rect-template: Rect -> Any
(define (rect-template r)
(... (rect-topleft r) ;; a Point

(rect-w r)
(rect-h r)))

Is there more we can do?

Templates: Two options to complete M05 22/32

;; point-template: Point -> Any
(define (point-template p)
(... (point-x p)

(point-y p)))

;; rect-template-v1: Rect -> Any
(define (rect-template-v1 r)
(... (point-template (rect-topleft r))

(rect-w r)
(rect-h r)))

;; rect-template-v2: Rect -> Any
(define (rect-template-v2 r)
(... (point-x (rect-topleft r))

(point-y (rect-topleft r))
(rect-w r)
(rect-h r)))

(define (point-mv p dx dy)
(make-point (+ (point-x p) dx)

(+ (point-y p) dy)))

(define (rect-mv-1 r dx dy)
(make-rect (point-mv (rect-topleft r)

dx dy)
(rect-w r)
(rect-h r)))

(define (rect-mv-2 r dx dy)
(make-rect
(make-point
(+ (point-x (rect-topleft r)) dx)
(+ (point-y (rect-topleft r)) dy))

(rect-w r)
(rect-h r)))

Mixed Data M05 23/32

(define-struct point (x y))
;; A Point is a (make-point Num Num)

(define-struct rect (topleft w h))
;; A Rect is a (make-rect Point Num Num)
;; Requires: w, h >= 0

(define-struct circle (centre radius))
;; A Circle is a (make-circle Point Num)
;; Requires: radius >= 0

;; A Shape is one of:
;; * Rect
;; * Circle

Mixed Data: Shape template M05 24/32

;; shape-template: Shape -> Any
(define (shape-template s)
(cond [(rect? s) (... s)]

[(circle? s) (... s)]))

;; shape-template: Shape -> Any
(define (shape-template s)
(cond [(rect? s) (rect-template s)]

[(circle? s) (circle-template s)]))

Mixed Data: Moving a Shape M05 25/32

(define (point-mv p dx dy)
(make-point (+ (point-x p) dx)

(+ (point-y p) dy)))

(define (rect-mv r dx dy)
(make-rect
(point-mv (rect-topleft r) dx dy)
(rect-w r)
(rect-h r)))

(define (circle-mv c dx dy)
(make-circle
(point-mv (circle-centre c) dx dy)
(circle-radius c)))

;; shape-mv: Shape Num Num -> Shape
(define (shape-mv s dx dy)
(cond [(rect? s)

(rect-mv s dx dy)]
[(circle? s)
(circle-mv s dx dy)]))

(define r
(make-rect (make-point 1 2) 3 4))

(define c
(make-circle (make-point 1 2) 3))

(check-expect
(shape-mv r 1 2)
(make-rect (make-point 2 4) 3 4))
(check-expect
(shape-mv c 1 2)
(make-circle (make-point 2 4) 3))

E
x.

3 Add two more shapes, squares and triangles, to our collection of shapes. Write
structure definitions (define-struct), data definitions ("A is a "), and templates.
Modify the Shape data definition and template appropriately.

E
x.

4 Write a function, shape-area, that consumes a Shape and produces that shape’s area.

anyof types M05 26/32

We had the data definition

;; A Shape is one of:
;; * Rect
;; * Circle

An alternative is

;; A Shape is (anyof Rect Circle)

Both of these allow the type name Shape to be used in contracts.

If only needed a very few times, one can skip the data definition:

;; shape-mv: (anyof Rect Circle) Num Num -> (anyof Rect Circle)
(define (shape-mv s dx dy) ...)

Violating contracts and data definitions M05 27/32

The data definition in the following is simply a comment.

(define-struct point (x y))
;; A Point is a (make-point Num Num)

There is nothing that prevents us from ignoring it:

(define misused (make-point "one" 'two))
(point-mv misused 1 2)

This causes a run-time error.

Violating contracts and data definitions M05 28/32

Racket does not enforce contracts and data definitions. They are simply comments and are
ignored by the machine.

Each value created in the execution of a program has a type (Int, Str, Bool, Rect, etc). A
function can be applied to value of any type (cool!) but will result in an error at run time if the
function can’t handle the value’s type (not cool!). This is known as dynamic typing.

Violating contracts and data definitions M05 29/32

Languages with static typing (e.g. Scala, C, ...) assign types to data definitions, function
results, parameters, etc. as well as values. For example, point-mv in Scala:

case class Point(x:Double, y:Double)

def pointMv(p:Point, dx:Double, dy:Double):Point = {

Point(p.x + dx, p.y + dy)

}

The fields in a Point are declared to be numbers of a particular type (Double). The first
parameter for pointMv is declared to be a Point, etc.

The following program is not legal and would not be allowed to run because "one" and 'two

do not have types that match Double, as required by Point.

pointMv(Point("one", ’two), 3, 4)

Checked functions M05 30/32

It’s possible to add type checking to Racket programs manually:

;; checked-make-point: Num Num -> Point
(define (checked-make-point x y)
(cond [(and (number? x) (number? y))

(make-point x y)]
[else (error "checked-make-point: requires numbers for x and y")]))

(check-expect (checked-make-point 1.5 2) (make-point 1.5 2))
(check-error (checked-make-point "two" 2)

"checked-make-point: requires numbers for x and y")

You are always welcome to add such checking to your code but are never required to do so
unless explicitly specified in a problem statement.

Goals of this module M05 31/32

You should be able to write code to define a structure and to use the functions that are
defined when you do so.

You should understand the data definitions we have used and be able to write your own.

You should be able to write a structure definition’s template and to expand it into the
body of a particular function that consumes that type of structure.

You should understand the template for mixed data and be able to write functions
based on it.

Summary: built-in functions M05 32/32

The following functions and special forms have been introduced in this module:

... define-struct error

You should complete all exercises and assignments using only these and the functions and
special forms introduced in earlier modules. The complete list is:
* + - ... / < <= = > >= abs and boolean? ceiling check-error check-expect check-within

cond cos define define-struct e else error even? exp expt floor integer? log max min
modulo negative? not number->string number? odd? or pi positive? quotient remainder
round sgn sin sqr sqrt string-append string-downcase string-length string-lower-case?
string-numeric? string-upcase string-upper-case? string<=? string<? string=? string>=?
string>? string? substring symbol=? symbol? tan zero?

