
Lists
CS135 Lecture 05

1

L05.0 List values and expressions

2

This is an empty list

Since it’s empty, we don’t know what
kind of list it is. It might be a grocery list.
It might be a list of things to do.

3

Having an empty list is not the same as having no list

4

This is an empty list in Racket

Since it’s empty, we don’t know what
kind of list it is. It might be list of Int. It
might be a list of Sym.

5

Having an empty list is not the same as having no list

6

Let’s add an item to our list

Looks like a grocery list.

7

Let’s add an item to our Racket list with cons

Looks like a list of Sym.

cons constructs a list by
adding an item to the front of
another list, e.g. empty.

cons can be confusing
because it can be viewed as
a function or a way of
representing the resulting
value.

8

Let’s add another item to our list

9

Let’s add a third item

10

We have milk in the fridge. Let’s erase it.

11

The rest function

12

rest is a racket function that
consumes a list and
produces that list with the
first item removed.

It is an error to apply rest to
the empty list.

The first function

13

first is a racket function
that consumes a list and
produces the first item of that
list.

It is an error to apply first
to the empty list.

Add some eggs

14

Another apple

15

Lists are values

Lists are the central data structure we use in CS135.

16

The definitions pane on
the top contains an
expression (because of
rest).

The interactions pane on
the bottom contains a
value.

Testing for the empty list with empty?

empty? consumes any value and produces true only if it is the empty list

17

List of Racket list operations

cons Constructs a list from a value and a list by adding the value to the front.

first Consumes a non-empty list and produces the first value in that list.

rest Consumes a non-empty list and produces a list with the first value removed.

empty? Consumes any value and produces true only if the value is empty.

list? Consumes any value and produces true only if the value is list.

cons? Consumes any value and produces true only if the value is a non-empty list.

18

L05.1 Composite data

19

Composite data

20

Now that we have lists, we can create data types that are more than just a single
number or symbol, i.e., composite data types

For example, we could use a list of two Num to represent a point in the Cartesian
coordinate system: (x, y).

We represent the point (-3, 1) as:
(cons -3 (cons 1 empty))

More generally, we represent the point (x, y) as:
(cons x (cons y empty)

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

Distance from the origin

We want to write a function the computes the distance from a point (x, y) to the
origin (0, 0).

This is the first draft of our purpose.

From our math classes we know that the distance from (x, y) to (0, 0) is

In thinking of examples, we want some with x positive, some with x negative,
some y positive, etc., as well as some with x and/or y zero.

21

Header

Let’s give a name to our function.

One possibility is distance-to-origin, which is accurate but long, with lots of
typing. Too long can be confusing in a larger context with lots of functions.

On the other hand, d0, is short but too cryptic. Let’s err on the side of long.

(define (distance-to-origin point)...)

22

Contract

Our function consumes a point and produces a Num.

A point is a (cons x (cons y empty)) so we can write our contract as:
;; distance-to-origin: (cons x (cons y empty)) -> Num

We can now finalize our purpose as:
;; distance-to-origin consumes a point in the Cartesian
;; coordinate system and produces the distance to the origin.

23

Body

At this point, we understand our problem fairly well, and we have a good idea how
the data will be represented in Racket.

Since there’s no recursion, we don’t use the template. We can just translate the
math directly into Racket.

(define (distance-to-origin point)
 (sqrt (+
 (sqr (first point)) ; get x from the point
 (sqr (first (rest point))) ; get y from the point
)))

We’ve added some comments since the access to x and y seems confusing.

24

Putting it all together

;; distance-to-origin consumes a point in the Cartesian
;; coordinate system and produces the distance to the origin.
;; distance-to-origin: (cons x (cons y empty)) -> Num
(define (distance-to-origin point)
 (sqrt (+
 (sqr (first point)) ; get x from the point
 (sqr (first (rest point))) ; get y from the point
)))
(check-expect (distance-to-origin (cons -3 (cons 4 empty))) 5)
(check-within
 (distance-to-origin (cons 3 (cons -1 empty))) 3.1622 0.001)
(check-expect (distance-to-origin (cons 6 (cons 0 empty))) 6)
(check-expect (distance-to-origin (cons 0 (cons 0 empty))) 0)

25

L05.2 Data definitions

26

Data types

27

We use various types in our contracts to help document the behaviour of our
functions.

These types include Sym, Nat, Rat, etc.

The contract for distance-to-origin may be hard to understand because the
data type it consumes is composite.

;; distance-to-origin: (cons x (cons y empty)) -> Num

Data definitions

We can use a data definition to give a name to a composite data type.

;; a Point is a (x,y) point in the Cartesian coordinate system
;; a Point is a (cons Num (cons Num empty)

With this data definition, we can simplify our contract for distance-to-origin.

;; distance-to-origin consumes a point in the Cartesian
;; coordinate system and produces the distance to the origin.
;; distance-to-origin: Point -> Num

28

Using helper functions

To make things more understandable, we can also create helper functions to create a Point
and to access its components.

;; a Point is a point in the Cartesian coordinate system
;; a Point is a (cons x (cons y empty)
;;
;; mk-point consumes an x and y coordinate and produces a Point
;; mk-point: Num Num -> Point
(define (mk-point x y) (cons x (cons y empty)))

;; get-x consumes a Point and produces its x coordinate
;; get-x: Point -> Num
(define (get-x point) (first point))

;; get-y consumes a Point and produces its y coordinate
;; get-y: Point -> Num
(define (get-y point) (first (rest point)))

29

Using helper functions

;; distance-to-origin consumes a point in the Cartesian
;; coordinate system and produces the distance to the origin.
;; distance-to-origin: Point -> Num
(define (distance-to-origin point)
 (sqrt (+ (sqr (get-x point)) (sqr (get-y point)))))

(check-expect (distance-to-origin (mk-point 3 4)) 5)
(check-within
 (distance-to-origin (mk-point 3 -1)) 3.1622 0.001)
(check-expect (distance-to-origin (mk-point 6 0)) 6)
(check-expect (distance-to-origin (mk-point 0 0)) 0)

30

A note on structures

DrRacket supports a feature called “structures”, which are composite data types
similar to the lists in the previous slides. You may see structures mentioned in
DrRacket documentation and in previous iterations of CS135.

On the one hand, structures do all the work of creating helper functions. Defining a
structure automatically creates functions to assess its components.

On the other hand, lists are much more powerful than structures. Anything you can
do with a structure, you can do with a list of fixed size.

In CS135, we have only one composite data type, the list. Almost, anyway. As you
will see next lecture, data definitions for lists can be recursive, allowing us to work
with composite data of arbitrary size.

31

Data definitions

We can also create data definitions to give names to sets of symbols a function
might produce or consume.

;; an Outerwear is (AnyOf 'jacket, 'sweater, 'shirt)

;; what-to-wear: Num -> Outerwear
(define (what-to-wear temperature)
 (cond [(< temperature 8) 'jacket]
 [(< temperature 16) 'sweater]
 [else 'shirt]))

32

Lecture 05 Summary

33

L05: You should know

34

● How to create and manipulate lists with cons, first, rest, empty, empty?,
list?, and cons?

● How to write data definitions and helper functions for composite data types
using lists.

● How to apply the design pattern to create functions that work with composite
data types using lists.

L05: Allowed constructs

Newly allowed constructs:
cons cons? empty empty? first list? rest

Previously allowed constructs:
() [] + - * / = < > <= >= ;
abs acos and asin atan check-expect check-within cond cos
define e else exp expt false inexact? log max min not
number? or pi quotient remainder sin sqr sqrt sub1 symbol?
symbol=? tan true zero?
AnyOf Bool Int Nat Num Rat Sym

Recursion must follow the Rules of Recursion (first version)

35

