Big-O notation

CS135 Lecture 08

L08.00 Math class

Huh? Why are there no slides? "‘

We treat this module as a traditional math class.

Your instructor will write on the board.

If you work with Accessibility Services. They will have a copy of the notes for you.

L08.01 Leveling up

List abbreviations

The expression

(cons v, (cons V, (... (cons V_empty)...)))
can be abbreviated as

(listv, v, ... V)

For example

(cons 4 (cons 3 (cons 2 (cons 1 empty)
can be abbreviated as

(list 4 3 2 1)

To use list abbreviations we have to adjust our language level.

Adjusting the language level

“Beginning student with List

' The Racket Language (3R)
Start your program with #1ang to specify

the desired dialect. For example:

#lang racket [docs]
#lang racket/base [docs]
#lang typed/racket [docs]
#lang scribble/base [docs]

... and many more

‘e Teaching Languages (%T)

How to Design Programs
Beginning Student

Intermediate Student
Intermediate Student with 1ambda
Advanced Student

DeinProgramm

Schreibe Dein Programm! - Anfinger

Schreibe Dein Programm!

Schreibe Dein Programm! - fortgeschritten
D Die Macht der Abstraktion

Input Syntax
v Case sensitive

Output Syntax

V' Insert newlines in printed values
" Enable tracing
‘e Constructor

Output Style ' Quasiquote
) write
" #true #false '()
‘e true false empty
‘e Mixed fractions

frzctlon Syle " Repeating decimals

Constant Style

Teachpacks

<< none >>

Abbreviations”

) Other Languages (30)

Hide Details Revert to Language Defaults

L08.02 Measuring efficiency

To measure efficiency, we count substitution steps "‘

(define (len 1lst)
(cond [(empty? 1st) O]
[else (addl (len (rest 1lst)))]))

(len empty) = 4 steps

(len (list 1)) = 10 steps

(len (list 1 2)) = 16 steps
(len (list 1 2 3)) = 22 steps
(len (list 1 2 3 4)) = 28 steps

If nis the length of the list, number of steps = f(n) =6n + 4 = O(n)

To measure efficiency, we count substitution steps

(2] ® Stepper

Beginning || Previous Call 1§ Previous ||| Selected ¢ Next[»| Next Call [px End PP 23/28| x

(define (len 1lst) (define (len 1lst) ~
(cond (cond 23/28
((empty? 1st) 0) ((empty? 1st) 0)

(else (addl (len (rest 1st)))))) (else (addl (len (rest 1st))))))

(add1 (addl (addl (addl (addl 0))))

(add1 =
(add1
(add1

(cond
(true 0)
(else
(add1l (len (rest empty)))))))))

Efficiency of built-in length vs. our 1en function "\

(length empty) = 1 step

(length (list 1)) = 1 step
(length (list 1 2)) = 1step
(length (list 1 2 3)) = 1step
(length (list 1 2 3 4)) = 1step

Built-in functions take one step, but you should consider their efficiency to be the
same as if you had written the equivalent function using directly on a list, i.e., you
should consider the built-in Length function to be linear in the length of the list.

You can assume that all other currently allowed built-in functions (other than
length) are constant time, i.e., O(1). Future lectures will have other examples.

10

Lecture 8 Summary

Name | Big-O Notation
Constant O(1)
Logarithmic O(logn)
Linear O(n)
“‘n log n” O(nlogn)
Quadratic O(n?)
Cubic O(n?)
Exponential O(2")

LO8: You should know

e How categorize the behaviour of functions using “Big-O notation”.
e How to use list abbreviations to write lists.
e How to use the stepper to measure efficiency.

A

13

LO8: Allowed constructs "\

Newly allowed constructs:
list

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos addl and asin atan check-expect check-within cond
cons cons? cos define e else empty empty? exp expt false
first inexact? integer? length list? log max min not number?
or pli quotient rational? remainder rest second sin sgr sqgrt
subl symbol? symbol=? tan third true zero?

listof Any anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules of Recursion (second version)

14

