
Efficiency
CS135 Lecture 09

1

2

L09.01 Linear

3

Linear time example - countdown

In CS135, efficiency is usually expressed in terms of the length of a consumed list
or in terms of the value of a consumed natural number n.

(define (countdown n)
 (cond [(zero? n) empty]
 [else (cons n (countdown (sub1 n)))]))

(countdown empty) ⇒ 4 steps
(countdown 1) ⇒ 10 steps
(countdown 10) ⇒ 64 steps
(countdown 100) ⇒ 604 steps

Number of steps = f(n) = 4 + 6n = O(n)

4

Linear time example - last

Generally, any function written with the Rules of Recursion (second version) will
be linear in the length of the list it consumes, or the value of n it consumes, as
long as it only uses built-in functions that are constant time.

(define (last lst)
 (cond [(empty? (rest lst)) (first lst)]
 [else (last (rest lst))]))

(last (list 1)) ⇒ 6 steps
(last (list 1 2)) ⇒ 12 steps
(last (list 1 2 3)) ⇒ 18 steps
(last (list 1 2 3 4)) ⇒ 24 steps f(n) = 6n = O(n)

5

Linear time example - attach

;; Add an element to the end of a list
;; attach: (listof Any) -> (listof Any)
define (attach element lst)
 (cond [(empty? lst) (cons element empty)]
 [else (cons (first lst) (attach element (rest lst)))]))

(attach -1 empty) ⇒ 5 steps
(attach -1 (list 1)) ⇒ 12 steps
(attach -1 (list 1 2)) ⇒ 19 steps
(attach -1 (list 1 2 3)) ⇒ 26 steps
(attach -1 (list 1 2 3 4)) ⇒ 33 steps f(n) = 5 + 7n = O(n)

6

Appending a list to a list (appnd) - examples

(appnd (list 1 2 3) (list 'a 'b 'c)) ⇒ (list 1 2 3 'a 'b 'c)

(appnd (list 1 2 3) empty) ⇒ (list 1 2 3)

(appnd empty (list 'a 'b 'c)) ⇒ (list 'a 'b 'c)

(appnd empty empty) ⇒ empty

7

Purpose, contract and header

;; append the second list to the first list
;; appnd: (listof Any) (listof Any) -> (listof Any)
(define (appnd lst0 lst1) ...)

This function is consistent with the 2nd version of the rule of recursion as long as
we only recurse on one of the two lists.

Which one do we recurse on?

8

Thinking about a list function

1. What should the function produce in the base case?

The first list is empty. Produce the second list.

2. What should the function do to the first element in a non-empty list?

It becomes the first element in the appended list.

3. What should applying the function to the rest of the list produce?

The second list appended to the rest of the first list

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

Put the first element on the front of the appended list.
9

Appending a list to a list

;; append the second list to the first list
;; appnd: (listof Any) (listof Any) -> (listof Any)
(define (appnd lst0 lst1)
 (cond [(empty? lst0) lst1]
 [else (cons (first lst0) (appnd (rest lst0) lst1))]))

This function is O(n), where n is the length of the first list:
(appnd (list 1 2 3) (list 'a 'b 'c)) ⇒ 25 steps
(appnd (list 1 2 3) empty) ⇒ 25 steps

DrRacket has a built in function append that you can now use. Like length, it
requires a single step in the stepper, but you should assume it’s secretly O(n).

10

L09.02 Quadratic

11

Sorting a list in increasing order

12

(check-expect (sort empty) empty)

(check-expect (sort (list 100)) (list 100))

(check-expect
 (sort (list 5 -10 1 14 3 1 8 9 6 -12))
 (list -12 -10 1 1 3 5 6 8 9 14))

Any other important test cases to consider?

Insertion Sort - an algorithm for sorting

(sort (list 5 -10 1 14 3 1 8 9 6 -12))

An insertion sort has a natural recursive definition
1. Sort the rest of the list

(sort (list -10 1 14 3 1 8 9 6 -12))
⇒ (list -12 -10 1 1 3 6 8 9 14)

2. Insert the first into its proper place
(insert 5 (list -12 -10 1 1 3 6 8 9 14))

⇒ (list -12 -10 1 1 3 5 6 8 9 14)

What about the empty list?

13

We already know how to insert into an ordered list

;; insert an number into an ordered list with
;; increasing values
;; insert: Num (listof Num) -> (listof Num)
(define (insert n lst)
 (cond [(empty? lst) (cons n empty)]
 [(< n (first lst)) (cons n lst)]
 [else (cons (first lst) (insert n (rest lst)))]))

It’s okay (and even encouraged) for you to reuse code we give you in class,
tutorials, and assignments, as well as your own answers to previous assignment
questions.

14

Insertion sort

;; Sort a list of numbers in increasing order
;; sort: (listof Num) -> (listof Num)
(define (sort lst)
 (cond [(empty? lst) empty]
 [else (insert (first lst) (sort (rest lst)))]))

Does this follow the rules of recursion?

15

Counting substitution steps

What is the “worst case” for this algorithm, i.e., in what situation will it take the
most steps?

Let’s think about boundary cases, e.g., already sorted vs. ordered in reverse.

(sort (list 1 2 3 4 5)) ⇒ 66 steps
(sort (list 5 4 3 2 1)) ⇒ 154 steps

When we think about execution time, we typically think about the “worst case”.

Here the worst case appears to be the case where the list is ordered in reverse.

16

Counting substitution steps

(sort empty) ⇒ 4 steps
(sort (list 1)) ⇒ 14 steps
(sort (list 2 1)) ⇒ 34 steps
(sort (list 3 2 1)) ⇒ 64 steps
(sort (list 4 3 2 1)) ⇒ 104 steps
(sort (list 5 4 3 2 1)) ⇒ 154 steps
(sort (list 6 5 4 3 2 1)) ⇒ 212 steps

f(n) = 5n2+5n+4 = O(n2)
Execution time is quadratic.

17

Helper functions

We have now seen several examples of “helper functions”, which is a function that
helps another function solve a problem. In the case of insertion sort, the function
insert acts as a helper function.

When a problem seems complicated to solve, we can often break the problem
down into smaller problems, solve them, and then combine the solutions.

Since we want to encourage you to write helper functions, you will not be
penalized on assignments if you don’t provide provide a purpose, contract or test
cases for helper functions unless we specifically ask you to write them, or we
specifically ask you to write the helper function.

18

Quadratic time functions

If you have a linear time function being used as a helper for function that follows
the Rules of Recursion, it can generally written so that the overall function is
quadratic in efficiency.

This is especially true if the helper is being used to filter or transform the result of a
recursive call on the rest of the list (like we are doing in sort).

19

Reversing a list

(define (attach element lst)
 (cond [(empty? lst) (cons element empty)]
 [else (cons (first lst) (attach element (rest lst)))]))

(define (rev lst)
 (cond [(empty? lst) empty]
 [else (attach (first lst) (rev (rest lst)))]))

Steps to reverse a list of length n = 3.5n2 + 6.5n +32 = O(n2)

There’s a built-in reverse, but you can’t use it yet. Later we will look at a linear
method for reversing a list. You can use the built-in reverse after that.

20

L09.03 Exponential

21

How do we find the largest element in a non-empty list?

1. What should the function produce in the base case?

If the rest of the list is empty, produce the only element in the list is the max

2. What should the function do to the first element in a non-empty list?

If the rest of the list is not empty, find the largest of the rest of the list and compare them

3. What should applying the function to the rest of the list produce?

The largest in the rest of the list.

4. How should the function combine #2 and #3 to produce the answer for the entire
list?

Compare them and produce the largest.

22

Finding the largest number in a non-empty list.

(define (largest lst)
 (cond ((empty? (rest lst)) (first lst))
 ((> (first lst) (largest (rest lst))) (first lst))
 (else (largest (rest lst)))))
(largest (list 1)) ⇒ 6 steps
(largest (list 2 1)) ⇒ 15 steps
(largest (list 3 2 1)) ⇒ 24 steps
(largest (list 4 3 2 1)) ⇒ 33 steps
(largest (list 5 4 3 2 1)) ⇒ 42 steps
(largest (list 6 5 4 3 2 1)) ⇒ 51 steps

f(n) = 9n - 3 = O(n) - Linear (but is this the worst case?)

23

Finding the largest number in a non-empty list.

(define (largest lst)
 (cond ((empty? (rest lst)) (first lst))
 ((> (first lst) (largest (rest lst))) (first lst))
 (else (largest (rest lst)))))
(largest (list 1)) ⇒ 6 steps
(largest (list 1 2)) ⇒ 21 steps
(largest (list 1 2 3)) ⇒ 51 steps
(largest (list 1 2 3 4)) ⇒ 111 steps
(largest (list 1 2 3 4 5)) ⇒ 231 steps
(largest (list 1 2 3 4 5 6)) ⇒ 471 steps

The number of steps roughly doubles with the length of the list (n)
24

Exponential “blow up”

The number of substitution
steps roughly doubles with
the length of the list.

Don’t even try this largest
on a list longer than 25.

If initial application is on a list
of length 25, there are two
recursive applications on the
rest of this list, which is of
length 24. Each of those
makes two recursive
applications, and so on.

25

Exponential “blow up”

largest can make O(2n) recursive applications, i.e., O(2n) steps.

In general, avoid multiple recursive calls on the rest of a list
26

largest largest

Linear-time largest

;; produce the larger of a pair of numbers
;; larger: Num Num -> Num
(define (larger a b)
 (cond [(> a b) a]
 [else b]))

;; produce the largest of a non-empty list of numbers
;; largest: (listof Num) -> Num
(define (largest lst)
 (cond [(empty? (rest lst)) (first lst)]
 [else (larger (first lst) (largest (rest lst)))]))

The built-in function max could be used instead of larger.
27

Lecture 9 Summary

28

L09: You should know

29

● How to append one list to another.
● How to sort elements with insertion sort.
● The difference between linear, quadratic, and exponential time algorithms.
● How to avoid exponential time “blow up”.

L09: Allowed constructs

Newly allowed constructs:
append

Previously allowed constructs:
() [] + - * / = < > <= >= ;
abs acos add1 and asin atan check-expect check-within cond
cons cons? cos define e else empty empty? exp expt false
first inexact? integer? length list list? log max min not
number? or pi quotient rational? remainder rest second sin
sqr sqrt sub1 symbol? symbol=? tan third true zero?
listof Any anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules of Recursion (second version)

30

