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L13.00 Trees as a data abstraction
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Trees
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Like dictionaries, trees provide an abstraction for organizing data.

The expression ((2 ∗ 6) + (5 ∗ 2))/(5 − 3) 
can be represented by the tree:

Information related to the evolution of 
species can also be represented as a 
tree:



Tree terminology
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A labeled point is called a “node”.

There are special names for 
some nodes:
● The “root” has no parent
● “Leaves” have no children
● “Internal node” ⇒ not a leaf

A line connecting a parent and 
child is called an “edge”



Characteristics of trees

A tree is a very general abstraction for organizing data. When trees are used in 
practice they often have more specific characteristics, for example:

● Number of children of internal nodes:
○ exactly two
○ at most two
○ any number

● Labels:
○ on all nodes
○ just on leaves

● Order of children (does it matter?)
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L13.01 Binary trees
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Binary trees
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Binary trees are a fundamental concept in computer science.

A binary tree is a tree with at most two children for each node.

In this module, we will label nodes with natural numbers.

The labels could also be symbols, strings, etc. and our
basic data definition will work with any labels.



Binary tree data definition
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;; A binary tree (BT) is one of
;; * empty
;; * (listof Any BT BT)

The empty list is also the empty binary tree.

While our examples use natural numbers as labels, this definition works for any 
labels.

This is a recursive data definition with two recursive components. Is this going to 
work under the “Rules of Recursion”???



Binary tree helper functions

;; mk-node consumes a label, a left child, and a right child
;; mk-node produces a BT
;; mk-node: Any BT BT -> BT
(define (mk-node label left right)
  (list label left right))
;; get-label consumes a BT and produces its label
;; get-label: BT -> Any
(define (get-label bt)
  (first bt))
;; get-left consumes a BT and produces the left child
;; get-left: BT -> BT
(define (get-left bt)
  (second bt))
;; get-right consumes a BT and produces the right child
;; get-right: BT -> BT
(define (get-right bt)
  (third bt))
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Creating a binary tree

(define example-bt
  (mk-node 5 (mk-node 1 empty empty)
             (mk-node 6 empty (mk-node 14 empty empty))))

(check-expect
  example-bt
  (list 5 (list 1 empty empty)
          (list 6 empty (list 14 empty empty))))
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Example: Count the nodes in a binary tree

;; Count the nodes in a binary tree
;; count-nodes: BT -> Nat
(define (count-nodes bt)
  (cond [(empty? bt) 0]
        [else (+ 1
                 (count-nodes (get-left bt))
                 (count-nodes (get-right bt)))]))
(check-expect (count-nodes example-bt) 4)

This doesn’t follow the rules of recursion! What to do?
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Rules for recursion on binary trees

The rules of recursion are there to ensure termination. For any binary tree, both 
the left and right “subtrees” will have fewer nodes. Therefore, we can ensure 
termination by:

1. Change at least one argument closer to termination while recurring.
2. When recurring on a binary tree use(get-left tree) and (get-right 

tree) and test termination with empty?
3. Arguments that aren’t involved in recursion can change.

Whenever you work with binary trees, you must follow these rules.

We will try to remind you on assignments and exams.
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Example: increment nodes in a binary tree of numbers

;; Add one to every label in a binary tree of numbers
;; increment: BT -> BT
;; Requires: labels are numbers
(define (increment bt)
  (cond [(empty? bt) empty]
        [else (mk-node (add1 (get-label bt))
                       (increment (get-left bt))
                       (increment (get-right bt)))]))
(check-expect
 (increment example-bt)
 (list 6 (list 2 empty empty)
       (list 7 empty (list 15 empty empty))))
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Searching binary trees

Does this tree contain 2? Does it contain 3? Does it contain 7?

(define example-bt2
  (mk-node 6
          (mk-node 3
                   (mk-node 2 empty empty)
                   (mk-node 45 empty empty))
          (mk-node 10
                   empty
                   (mk-node 3
                            (mk-node 9 empty empty)
                            (mk-node 5 empty empty)))))
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Searching binary trees

Our strategy:
● If the tree is empty, produce false.
● See if the root node contains the label we’re looking for. If so, produce true.
● Otherwise, recursively search in the left subtree and in the right subtree. If 

either recursive search finds the key, produce true. Otherwise, produce 
false.
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Searching a binary tree

;; Does the tree contain the label
;; bt-contains?: Num BT -> Bool
;; Requires: labels are numbers
(define (bt-contains? label bt)
  (cond [(empty? bt) false]
        [(= (get-label bt) label) true]
        [else (or (bt-contains? label (get-left bt))
                  (bt-contains? label (get-right bt)))]))
(check-expect (bt-contains? 2 example-bt2) true)
(check-expect (bt-contains? 3 example-bt2) true)
(check-expect (bt-contains? 7 example-bt2) false)
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Find a path to a label

Write a function, bt-path, that searches for an label in the tree:
● If the label is not found return empty
● If the label is found return a list of the symbols 'left, 'right, and 'found 

indicating the path from the root to the item.
● If there are duplicates in the tree, we prefer the leftmost
(check-expect (bt-path 2 example-bt2)
              (list 'left 'left 'found))
(check-expect (bt-path 3 example-bt2) (list 'left 'found))
(check-expect (bt-path 7 example-bt2) empty)
(check-expect (bt-path 9 example-bt2)
              (list 'right 'right 'left 'found))
(check-expect (bt-path 999 empty) empty)
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Find a path to a label

;; Produce a path to a label
;; bt-path: Num BT -> (listof (anyof 'left 'right 'found))
;; Requires: labels are numbers
(define (bt-path label bt)
  (cond [(empty? bt) empty]
        [(= (get-label bt) label) (list 'found)]
        [(bt-contains? label (get-left bt))
         (cons 'left (bt-path label (get-left bt)))]
        [(bt-contains? label (get-right bt))
         (cons 'right (bt-path label (get-right bt)))]
        [else empty]))
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L13.02 Binary search trees
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Binary search trees
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We will now make one change that can make searching much more efficient. This 
change will create a tree structure known as a binary search tree (BST).

All the examples in this section use natural numbers as labels, but binary search 
trees can store any data type with a ordering operations (<, >, =).

For any given collection of labels, there is more than one possible tree. How the 
keys are placed in a tree can improve the efficiency of searching the tree when 
compared to searching the same items in a list.

The BST ordering property: the label of a node is > every than every label in the 
left subtree and ≤ every label in the right subtree.



Binary search tree data definition
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;; A binary search tree (BST) is one of
;; * empty
;; * (listof Nat BST BST)
;; Requires: label is > than labels in left subtree
;;           and label <= labels in right subtree

(define example-bst
  (mk-node 5 (mk-node 1 empty empty)
             (mk-node 6 empty (mk-node 14 empty empty))))

Helper functions are the same as for binary trees (BT). 



There can be multiple BSTs storing the same labels
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Making use of the ordering property

When searching binary tree one of the recursive applications to the subtrees can 
be avoided, which can be more efficient (sometimes considerably so).

To search a binary tree for the label n:
1. If the tree is empty, the label is not in the tree, return false.
2. If the label at the root = n, return true.
3. If the label at the root > n, recursively search the left subtree.
4. Otherwise, recursively search the right subtree.

(check-expect (bst-contains? 1 example-bst) true)
(check-expect (bst-contains? 6 example-bst) true)
(check-expect (bst-contains? 8 example-bst) false)
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Searching a binary search tree

;; Does a binary search tree contain a label?
;; bst-contains?: Nat BST -> Bool
(define (bst-contains? n bst)
  (cond [(empty? bst) false]
        [(= (get-label bst) n) true]
        [(> (get-label bst) n)
         (bst-contains? n (get-left bst))]
        [else (bst-contains? n (get-right bst))]))

(check-expect (bst-contains? 1 example-bst) true)
(check-expect (bst-contains? 6 example-bst) true)
(check-expect (bst-contains? 8 example-bst) false)
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Adding a label to a binary search tree

Write a function bst-add that consumes a label and a binary search tree and 
produces a new tree with the label added if it’s not already in the tree.

(check-expect
  (bst-add 10 example-bst)
  (list 5 (list 1 empty empty)
          (list 6 empty
                  (list 14 (list 10 empty empty) empty))))
(check-expect (bst-add 6 example-bst) example-bst)
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Adding a label to a binary search tree

;; Add a label to a binary search tree
;; bst-add: Nat BST -> BST
(define (bst-add n bst)
  (cond [(empty? bst) (mk-node n empty empty)]
        [(= (get-label bst) n) bst]
        [(> (get-label bst) n)
         (mk-node (get-label bst)
                  (bst-add n (get-left bst))
                  (get-right bst))]
        [else (mk-node (get-label bst)
                       (get-left bst)
                       (bst-add n (get-right bst)))]))
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Binary search trees in practice

A “complete binary tree” is a binary tree in which all levels except possibly the last 
are completely filled, and all nodes in the last level are as far left as possible. 

Searching a complete binary tree is O(log n) where n is the number of nodes.

If the BST has all left subtrees empty, it looks and behaves like a sorted list, and 
searching is O(n).
 
In later courses, you will see ways to keep a BST “balanced” so that “most” nodes 
have non-empty left and right children. Those courses will also cover additional 
ways to analyze the efficiency of algorithms and operations on data structures.
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Implementing a dictionary with a binary search tree 

A binary search tree can be use to store key-value pairs:

;; A binary search tree dictionary (SBTD) is one of
;; * empty
;; * (listof String SBTD SBTD Nat)
;; Requires: binary search tree ordering properties
;; 
;; mk-node produces a BSTD
;; mk-node: String BSTD BSTD Nat -> BSTD
(define (mk-node key left right value) (...)

As an exercise, implement lookup, add, and delete.
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L13 Summary
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L13: You should know 
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● Fundamental concepts and terminology for trees as a data abstraction
● Data definition and helper functions for binary trees
● The rules of recursion for binary trees
● How to write functions that produce and consume binary trees
● Searching binary trees
● Ordering property for binary search trees
● Searching binary search trees



L13: Allowed constructs

Newly allowed constructs:
none

Previously allowed constructs:
( ) [ ] + - * / = < > <= >= ;
abs acos add1 and append asin atan char? char=? char<? 
check-expect check-within cond cons cons? cos define e else 
empty empty? exp expt false first inexact? integer? length 
list list? log max min not number? or pi quotient rational? 
remainder rest reverse second sin sqr sqrt string? string=? 
string<? string->list list->string sub1 symbol? symbol=? tan 
third true zero?
listof Any anyof Bool Char Int Nat Num Rat Str Sym
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