
Functional abstraction
CS135 Lecture 19

1

L19.0 Abstract list functions

2

Abstraction

3

“Abstraction” is the process of finding similarities or common aspects, and
forgetting unimportant differences.

Over the term, we have seen many similarities between functions and captured
them in templates and rules.

(define (natural-template n)
 (cond
 [(zero? n) ...]
 [... ...]
 [else (... n (natural-template (sub1 n)))]))

filter

Recall eat-apples and keep-odds. Those two functions had a very similar
structure. Each selected items from a list to keep (or discard, depending on your
viewpoint).We abstracted the structure into a function called filter that
consumed a predicate governing the items to keep.

The function filter is an example of an “abstract list function”.
filter: (X -> Bool) (listof X) -> (listof X)

For example:
(define (eat-apples lst)
 (filter (lambda (sym) (not (symbol=? 'apple sym))) lst))

(define (keep-odds lst) (filter odd? lst))

4

Visualizing filter

(filter even? '(0 1 2 3 4))

5

Abstract list functions

We will now look for other patterns where we can perform similar abstractions

In CS135 we learn five of these “abstract list functions”, including filter:
(filter pred? lst) Retain only those elements of a list for which pred? is true.

(build-list n f) Construct a list by applying f to the numbers 0 to (- n 1).

(map f lst) Construct a new list by applying f to each element of a list.

(foldr f base lst) Recursively combine (“fold”) elements of a list right to left.

(foldl f base lst) Recursively combine (“fold”) elements of a list left to right.

What does it mean to “fold” a list? We will explain, but first let’s look at two simpler
abstract list functions, build-list and map.

6

L19.1 build-list

7

build-list

A simple but useful built-in abstract list function is build-list.
build-list: Nat (Nat ->X) -> (listof X)

It consumes a natural number n and a function f, and produces the list:
(list (f 0) (f 1) ... (f (sub1 n)))

For example:
(build-list 4 (lambda (x) x)) ⇒ (list 0 1 2 3)
(build-list 4 (lambda (x) (* 2 x))) ⇒ (list 0 2 4 6)

The function build-list abstracts the “count up” pattern from lecture L14, and it
is easy to write our own version.

8

We can implement an equivalent function ourselves

;; my-build-list: Nat (Nat -> X) -> (listof X)
(define (my-build-list n f)
 (local [(define (list-from i)
 (cond [(>= i n) empty]
 [else (cons (f i) (list-from (add1 i)))]))]
 (list-from 0)))

(check-expect
 (my-build-list 4 (lambda (x) x)) (list 0 1 2 3))

(check-expect
 (my-build-list 4 (lambda (x) (* 2 x))) (list 0 2 4 6))

9

Visualizing build-list

(build-list 5 (lambda (x) (* 2 x)))

10

L19.2 map

11

Transforming a list

12

Another common pattern transforms each element of a list.

;; add1-list adds one to each element of a list
;; add1-list: (listof Num) -> (listof Num)
(define (add1-list lst)
 (cond [(empty? lst) empty]
 [else (cons (add1 (first lst))
 (add1-list (rest lst)))]))

(check-expect (add1-list empty) empty)
(check-expect
 (add1-list (cons 10 (cons -6 (cons 999 empty))))
 (cons 11 (cons -5 (cons 1000 empty))))

Transforming a list

13

Transformations can be simple or complicated. Sometimes the exact
transformation depends on the element being transformed.

(define (apples-to-oranges lst)
 (cond [(empty? lst) empty]
 [(symbol=? 'apple (first lst))
 (cons 'orange
 (apples-to-oranges (rest lst)))]
 [else
 (cons (first lst)
 (apples-to-oranges (rest lst)))]))

map

The built-in map abstract list function transforms a list, applying a function to each
element and producing a new list comprising the result.

map: (X -> Y) (listof X) -> (listof Y)

For example:
(map add1 '(0 1 2 3 4)) ⇒ '(1 2 3 4 5)

(map (lambda (x)
 (cond [(symbol=? x 'apple) 'orange]
 [else x]))
 '(apple eggs bread apple milk bread))

⇒ '(orange eggs bread orange milk bread)

14

We can implement an equivalent function ourselves

;; my-map: (X -> Y) (listof X) -> (listof Y)
(define (my-map f lst)
 (cond [(empty? lst) empty]
 [else (cons (f (first lst)) (my-map f (rest lst)))]))

(check-expect (my-map add1 '(0 1 2 3 4)) '(1 2 3 4 5))

(check-expect
 (my-map (lambda (x)
 (cond [(symbol=? x 'apple) 'orange] [else x]))
 '(apple eggs bread apple milk bread))
 '(orange eggs bread orange milk bread))

15

Visualizing map

(map even? '(0 1 2 3 4))

16

L19.3 foldr

17

Folding a list

A frequent pattern is to recurse on the rest of a list and then combine the result
with the first of the list. The abstract list function foldr abstracts this pattern.

(define (sum-of-numbers lst)
 (cond [(empty? lst) 0]
 [else (+ (first lst)
 (sum-of-numbers (rest lst)))]))

(define (all-true? lst)
 (cond [(empty? lst) true]
 [else (and (first lst)
 (all-true? (rest lst)))]))

18

Folding a list

To “fold” a list we supply a function that specifies how we are combining the
first of a list with the result of recursing on the rest of the list. We must also
supply a base case for the recursion.

In the case of sum-of-numbers this function is + and the base case is 0.
(define (sum-of-numbers lst) (foldr + 0 lst))
(sum-of-numbers '(1 2 3 4 5)) ⇒ 15

In the case of all-true? this function is and and the base case is true.
(define (all-true? lst)
 (foldr (lambda (x y) (and x y)) true lst))
(all-true? (list true false true false true)) ⇒ false

19

Folding a list

In the case of all-true? we would like to write:

(define (all-true? lst) and true lst)

However, this doesn’t work for mysterious reasons.

Nonetheless, the example shows that the function used with foldr consumes two
arguments:

(foldr (lambda (x y) (and x y)) true lst)

20

first of
the list

result of recursing on
the rest of the list
(or the base case)

foldr

The foldr function recursively combines elements of a list right to left.

foldr: (X Y -> Y) X (listof X) -> Y

Starting with the base case and the last element,
the function f is applied to the each element of the
list along with the result of the previous application.

(foldr f base (list x1 x2 … xn))
 ⇒ (f x1 (f x2 … (f xn base)…))

Remember this pattern!!!

21

We can implement an equivalent function ourselves

;; my-foldr: (X Y -> Y) X (listof X) -> Y
(define (my-foldr f base lst)
 (cond [(empty? lst) base]
 [else (f (first lst)
 (my-foldr f base (rest lst)))]))

(check-expect (my-foldr + 0 '(1 2 3 4 5)) 15)

(check-expect
 (my-foldr (lambda (x y) (and x y)) true
 (list true false true false true))
 false)

22

Producing lists with foldr

The foldr function can combine elements of a list to produce any values of any
type, including lists.

foldr: (X Y -> Y) X (listof X) -> Y

Y can be any type, including (listof Z).

(foldr string-append "" '("To" "Be" "Or" "Not" "2B"))
 ⇒ "ToBeOrNot2B"

(foldr (lambda (x y) (cons (* 2 x) y)) empty '(0 1 2 3 4))
 ⇒ '(0 2 4 6 8)

23

Visualizing foldr

(foldr string-append "2B" '("To" "Be" "Or" "Not"))

24

Visualizing foldr

(foldr (lambda (x y) (cons (* 2 x) y)) empty '(0 1 2 3 4))

25

Combining higher order functions

Two or more abstract list functions can be used together to accomplish a task.

;; sum: Nat (Nat -> X) -> (listof X)
(define (sum n f)
 (foldr + 0 (build-list n f)))

(sum 4 sqr)
 ⇒ (foldr + 0 (build-list 4 sqr))
 ⇒ (foldr + 0 (list 0 1 4 9))
 ⇒ 14

Many assignment and exam questions will require you to combine two or more
higher order functions.

26

Implementing filter and map with foldr

The foldr function is powerful and general. For example, we can use it to
implement our own versions of filter and map.

(define (my-filter ? lst)
 (foldr (lambda (x y) (cond [(? x) (cons x y)] [else y]))
 empty lst))
(my-filter even? '(1 2 3 4 5 6)) ⇒ '(2 4 6)

(define (my-map f lst)
 (foldr (lambda (x y) (cons (f x) y)) empty lst))
(my-map add1 '(0 1 2 3 4)) ⇒ '(1 2 3 4 5)

27

L19.3 foldl

28

foldl

The foldl function recursively combines elements of a list left to right.

foldl: (X Y -> Y) X (listof X) -> Y

Starting with the base case and the last element,
the function f is applied to the each element of the
list along with the result of the previous application.

(foldl f base (list x1 x2 … xn))
 ⇒ (f xn … (f x2 (f x1 base)…))

Remember this pattern!!!

29

foldr vs. foldl

The foldr function recursively combines elements of a list right to left.

foldr: (X Y -> Y) X (listof X) -> Y

(foldr f base (list x1 x2 … xn))
⇒ (f x1 (f x2 … (f xn base)…))

The foldl function recursively combines elements of a list left to right.

foldl: (X Y -> Y) X (listof X) -> Y

(foldl f base (list x1 x2 … xn))
⇒ (f xn … (f x2 (f x1 base)…))

30

Visualizing foldl

(foldl string-append "2B" '("Not" "Or" "Be" "To"))

31

Visualizing foldl

(foldl (lambda (x y) (cons (* 2 x) y)) empty '(0 1 2 3 4))

32

We can implement an equivalent function ourselves

(define (my-foldl f base lst)
 (local [(define (foldl/acc lst acc)
 (cond [(empty? lst) acc]
 [else (foldl/acc (rest lst)
 (f (first lst) acc))]))]
 (foldl/acc lst base)))

(check-expect
 (my-foldl string-append "2B" '("Not" "Or" "Be" "To"))
 "ToBeOrNot2B")

The foldr function generalizes accumulative recursion.

33

L19 Summary

34

L19: You should know

35

How to use and combine our five abstract list functions:

(filter pred? lst) Retain only those elements of a list for which pred? is true.

(build-list n f) Construct a list by applying f to the numbers 0 to (- n 1).

(map f lst) Construct a new list by applying f to each element of a list.

(foldr f base lst) Recursively combine (“fold”) elements of a list right to left.

(foldl f base lst) Recursively combine (“fold”) elements of a list left to right.

L19: Allowed constructs

Newly allowed constructs:
build-list foldl foldr map string-append

Previously allowed constructs:
() [] + - * / = < > <= >= ; '
abs acos add1 and append asin atan char? char=? char<?
check-expect check-within cond cons cons? cos define e else
empty empty? even? exp expt false filter first inexact?
integer? lambda length list list? local log max min not
number? odd? or pi quotient rational? remainder rest reverse
second sin sort sqr sqrt string? string=? string<?
string->list list->string string-append sub1 symbol?
symbol=? tan third true zero?
listof Any anyof Atom Bool Char Int Nat Num Rat Str Sym 36

