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L21.0 True randomness
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Our model of computation is a powerful as any other

Over lectures L01-L04 we developed a model of computation with four elements:

1. Values and expressions
2. Functions
3. Conditional expressions
4. Recursion

Two computational systems have equal computational power if each system can 
simulate any computation that the other can perform. Using our rules of 
substitution, these elements give a model of computation that is as powerful as any 
other. Since we have arbitrarily large numbers, adding lists didn’t change what we 
can compute. We can simulate any list with a large enough number.
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We can’t write a function to generate a random number

Our model of computation can’t generate random numbers.

Given a Racket expression, our computation proceeds deterministically, 
following fixed substitution rules. At each step, the next rule to apply is 
unambiguously defined, unless no more rules can be applied.

To generate a truly random number, a computer must have access to an external 
non-deterministic source, like quantum noise, radioactive decay, or even the 
cosmic background radiation. These source lie outside our deterministic model.
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Randomness doesn’t increase computational power

Even if we add access to a source of true randomness, it doesn’t increase what 
we can compute—every result we get could still, in theory, be computed 
deterministically by simulating all possibilities.

What randomness can improve is efficiency: with randomness, we can 
sometimes compute answers faster or more simply, even though the final result is 
still something we could compute without it.

For example, if we are simulating a game that has dice or cards, can simulate 
every possible roll or deal. This process is slow, but a computer with a source of 
true randomness is theoretically no more powerful than a computer without it.

Nonetheless, a source of randomness increases what we can practically compute.
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Special devices can generate truly random numbers
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Many computers provide a source of randomness that is “close” to true randomness.

On a Mac and computers running linux, there is a special device called “/dev/random”. 
This device pulls from environmental noise like keyboard timings, mouse movements, and 
disk I/O to create a “pool” of random numbers.

For high security applications some computers have dedicated hardware random number 
generators (HRNGs), sometimes based on quantum effects.

There are also public sources of randomness such as the NIST Randomness Beacon (which 
you should not use for secret keys):  https://beacon.nist.gov/home

None of these sources is fast and convenient enough for general-purpose gaming or 
simulation. True randomness is mostly required for security and cryptography.

https://beacon.nist.gov/home


Some early computers tried to provide true randomness

“In the Mark II machine the principle that the state of the machine at one completion signal determines the state at 
the next is abandoned if instructions with function symbol /W are used. The behaviour of the machine is then to be 
described as a ‘stochastic’ (i.e. chance-controlled) process and is suitable for calculations concerned with 
stochastic processes.The instruction /W actually puts random digits into the twenty least significant digits of the 
accumulator.

“The following problem is suitable for the use of this facility.

“A man in New York starts walking from a street intersection, and at each street intersection decides in which 
direction to walk by twice tossing a coin (each of the four directions is chosen equally often). It is required to find 
the probability that before walking twenty blocks he will have succeeded in returning to his starting point. For this 
purpose New York is to be assumed to be an infinite rectangular lattice of streets and avenues.”

from Alan Turing’s Manual for the Ferranti Mk. I

http://www.panix.com/~rst/turing.pdf
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For most purposes “pseudorandomness” is sufficient

Pseudorandomness refers to the appearance of randomness produced by a 
deterministic algorithm.

For most games and simulations, it is sufficient to use deterministic functions to 
generate sequences of numbers that “appear” random.

In Racket, this pseudorandomness is provided by the random function. 

In many games, the players themselves are a source of noise that is effectively 
random, since we can’t predict when a player will push a button or pull a trigger. 
Players can also take different actions in different circumstances.

The lack of true randomness is only a practical problem in high security contexts.
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L21.1 Pseudorandom numbers
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Generating pseudorandom numbers
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A “pseudorandom number generator” (PRNG) is a function that consumes a value 
for its current “state” (S) and produces a pseudorandom number R along with a 
new state (S’).

prng: State -> (list State Nat)

Starting with an initial state S0 we can generate a sequence:
PSRG (S0) ⇒ (S1, R1)
PSRG (S1) ⇒ (S2, R2)
PSRG (S2) ⇒ (S3, R3)
…

The sequence R1, R3, R3, … is deterministic but has statistical properties similar to 
random numbers. Often, the pseudorandom number itself is also the state: Si = Ri.



Middle-square method

An early pseudo-random number generator was proposed by the mathematician, 
physicist, engineer, and computer scientist John von Neumann in 1949.

Suppose we want to generate a random number between 0 and 9999 inclusive.

We square the previous number (the current state), then extract the “middle four” 
digits of the result to get the next number in the sequence.

;; middle-square-4: Nat -> Nat
(define (middle-square-4 n)
  (quotient (remainder (sqr n) 1000000) 100))

https://en.wikipedia.org/wiki/Middle-square_method
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Middle-square method

;; middle-square-4: Nat -> Nat
(define (middle-square-4 n)
  (quotient (remainder (sqr n) 1000000) 100))

Assume 519 is our current number
(sqr 519) ⇒ 269361

If we “pad” with zeros at the beginning 00269361, the “middle four” is 2693.

(middle-square-4 519) ⇒ 2693
(middle-square-4 2693) ⇒ 2522
(middle-square-4 2522) ⇒ 3604
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Generating a list of random numbers using this method

;; middle-square-4: Nat -> Nat
(define (middle-square-4 n)
  (quotient (remainder (sqr n) 1000000) 100))

;; random-list: Nat Nat -> (listof Nat)
(define (random-list n seed)
  (reverse
   (foldr (lambda (x y) (cons (middle-square-4 (first y)) y))
          (list seed)
          (build-list n (lambda (n) n)))))

(random-list 8 519)
 ⇒ (list 519 2693 2522 3604 9888 7725 6756 6435 4092)
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Seeding a random number generator

In a PRNG, the “seed” is a value that sets the initial state. For example, in the 
middle-square method, the seed is both the initial number in the sequence and the 
initial state for the PRNG.

The middle-square method can generate pseudo-random numbers with n digits 
(padded with zeros) where n is an even number so that extracting the middle n 
digits from a 2n-digit square is unambiguous.

However, the middle-square method is not really a great PRNG. For example, with 
a seed of 0, it will always generate 0 as the next “random number”. Many seeds 
quickly lead to short repeating cycles or even collapse to 0.
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Linear congruential generator

A common PRNG for straightforward applications like gaming is a “linear 
congruential generator”, which computes successive random numbers with the 
formula: 

The parameters a, c, and m need to be selected carefully, where a widely used 
selection gives the formula: 

We present this formula solely for interest and insight. Just like you should 
(almost) never write your own sort function in practice, you should (almost) never 
write your own PRNG. In particular, don’t use this formula for cryptography!

https://en.wikipedia.org/wiki/Linear_congruential_generator
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L21.2 random
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Racket has a built-in random number generator

The random function consumes a natural number n and produces a random 
number between 0 and (- n 1).

(random 10000) ⇒ 4075

It also consumes and produces state, but unfortunately this state is hidden away 
somewhere where we can’t see it.

(random 10000) ⇒ 5371

This is called a “side effect”, which is not something that normally happens in 
“Intermediate Student with Lambda”. If we want to use random, we will just have 
to live with it, but remember that random is really consuming and producing state.
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Seeding random

Sadly, there is also no way to seed the random number generator in “Intermediate 
Student with Lambda”.

(seed 3382891); ERROR 😢
In other programming languages (and in “Advanced Student”) it is possible to seed 
the random number generator and reset the initial state, where the same seed will 
always set the initial state to the same value.

Nonetheless, with all its flaws, random will let us write simple games and perform 
simple simulations.
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L21.3 Simulation
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Let’s try the problem posed by Alan Turing in 1950

“In the Mark II machine the principle that the state of the machine at one completion signal determines the state at 
the next is abandoned if instructions with function symbol /W are used. The behaviour of the machine is then to be 
described as a ‘stochastic’ (i.e. chance-controlled) process and is suitable for calculations concerned with 
stochastic processes.The instruction /W actually puts random digits into the twenty least significant digits of the 
accumulator.

“The following problem is suitable for the use of this facility.

“A man in New York starts walking from a street intersection, and at each street intersection decides in which 
direction to walk by twice tossing a coin (each of the four directions is chosen equally often). It is required to find 
the probability that before walking twenty blocks he will have succeeded in returning to his starting point. For this 
purpose New York is to be assumed to be an infinite rectangular lattice of streets and avenues.”

from Alan Turing’s Manual for the Ferranti Mk. I

http://www.panix.com/~rst/turing.pdf
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Let’s try the problem posed by Alan Turing in 1950

“A man in New York starts walking from a street intersection, and at each 
street intersection decides in which direction to walk by twice tossing a coin 
(each of the four directions is chosen equally often). It is required to find the 
probability that before walking twenty blocks he will have succeeded in 
returning to his starting point. For this purpose New York is to be assumed 
to be an infinite rectangular lattice of streets and avenues.”

The wording reflects the time period. Today we would say “person” instead 
of “man”, and we wouldn’t assume that everyone knows that New York is 
(more or less) laid out in a grid pattern.
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Let abstract the problem

Starting at the origin (0,0) our person will 
move randomly either North (0, +1), 
South (0, -1), East (+1, 0) or West (-1, 0). 

They can make up to n moves. For 
example, n = 20.

We want to write a function that 
consumes a natural number n, and 
produces true or false, indicating if 
they ever returned to the origin.
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A random move

;; Randomly move one block from a current position
;; random-move: (list Int Int) -> (list Int Int)
(define (random-move location)
  (local
    [(define move (random 4))
     (define x (first location))
     (define y (second location))]
    (cond [(zero? move) (list x (add1 y))] ; North
          [(= 1 move) (list x (sub1 y))]   ; South
          [(= 2 move) (list (add1 x) y)]   ; East
          [else (list (sub1 x) y)])))      ; West
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Do we return to the origin in up to n moves?

;; Does up to n random moves return us to the origin
;; random-moves: Nat (list Int Int) -> Bool
(define (random-moves n current)
  (cond [(zero? n) false]
        [else
         (local
           [(define new (random-move current))]
           (cond [(and (zero? (first new))
                       (zero? (second new))) true]
                 [else (random-moves (sub1 n) new)]))]))
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10,000 simulations

;; simulate m random walks of up to n moves
;; produce the number of times we return to the origin
;; simulate: Nat Nat -> Nat
(define (simulate m n)
  (foldr (lambda (x y)
           (+ y (cond [(random-moves n (list 0 0)) 1]
                      [else 0])))
         0
         (build-list m (lambda (n) n))))

(simulate 10000 20)
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L21 Summary
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L21: You should know 
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● The difference between true randomness and pseudorandom numbers.
● How to use random to write games and simulations.

If you are interested in this and related topics, you might want to take

CS 458: Computer Security and Privacy,  or

CO 487/687: Applied Cryptography 



L21: Allowed constructs

Newly allowed constructs:
random

Previously allowed constructs:
( ) [ ] + - * / = < > <= >= ; '
abs acos add1 and append asin atan build-list char? char=? 
char<? check-expect check-within cond cons cons? cos define 
e else empty empty? even? exp expt false filter first foldl 
foldr inexact? integer? lambda length list list? local log 
map max min not number? odd? or pi quotient rational? 
remainder rest reverse second sin sort sqr sqrt string? 
string=? string<? string->list list->string string-append 
sub1 symbol? symbol=? tan third true zero?
listof Any anyof Atom Bool Char Int Nat Num Rat Str Sym 28


