Values and expressions
CS135 Lecture 01

LO1.0 Prefix notation

CAN YOU SOLVE THIS

CORRECTLY?
VIRAL MATH PROBLEM

6 -2(1+2) =

THIS MATH PROBLEM HAS THE
INTERNET STUMPED. DO YOU KNOW

THE RIGHT ANSWER?

“Viral math problem” "\

This “problem” seems confusing because it ORDER OFM__@

mixes notational systems, only uses
parentheses for some subexpressions, and FRRENTHESES, EXPONENTS, DIVISION ¢

requires you to remember the rules for ﬂW& gg“u;nmm
ordering operations.
6+2(1+2) es\i

= ((6/2)-(1+2)) .

= (3-(1+2))

e .

REASE EMAIL MY DAD A SHARK.

https: www.xkcd.com/992

https://www.xkcd.com/992/

Prefix notation "\

In elementary and high school, you used infix notation for mathematical
expressions:

(6/2)-(1+2))

Racket uses prefix notation for expressions.
e All expressions are surrounded by parenthesis.
e The operator goes first.
e Racket uses “*” instead of

“n
.

for multiplication.
(* (/ 6 2) (+1 2))

Prefix notation provides a uniform notation for Racket functions, operators, etc.

Evaluating a racket expression "\

We use a process of substitution, just as with our mathematical expressions. Each
step is indicated using the ‘yields’ symbol =

(* (/ 6 2)(+12))
= (* 3 (+ 1 2))
= (* 3 3)

= 9

The substitution process repeatedly simplifies the program. At each step, the
result is a valid (but simpler) Racket program. It eventually simplifies to a value.

A substitution step finds the leftmost/inner subexpression, with no
parentheses inside, and rewrites it by replacing the subexpression by its value.

Substitution steps

(- (+9 (* (/6 (+11)) 3)) 2)

= (-

(+ 9 (* (/ 6 2) 3)) 2)
(+ 9 (* 3 3)) 2)

(+ 9 9) 2)

18 2)

Basic arithmetic operators "‘

Addition (+), Subtraction (-), Multiplication (*), and Division (/)
(+ 11 12 13) = 36
(/ 720 5 4 3 2 1)=6
These operators can operate on two or more values as a single step.

Negation:
(- 144) = -144
(- -21) => 21

But not:
(+ 72) => 32 @& ERROR

LO01.1 Exact numbers

Natural numbers (V) "\

Natural numbers are important in computer science (and especially in CS135)
Natural numbers are defined as follows:

e 0 is a natural number
e If nis a natural number, then n + 1 is a natural number

Some definitions of natural numbers start at 1, but O is more convenient in
computer science contexts.

Since [N is not on your keyboard, and “natural number” is a lot of typing, we will
write “Nat” to indicate natural numbers when we want to talk about them in
Racket.

10

Integers (%) "\

Natural numbers are great if we just want to add things together or to subtract
small numbers from big numbers, but as soon as we write 1 - 2 = ? we discover

we need negative numbers as well.

. -3,-2,-1,0,1,2,3, ...

Since Z is not on your keyboard we will write “Int” to indicate integers.

11

Rational numbers (@) "\

Integers are great if we just want to add, subtract, multiple, and divide by factors,
but as soon as we write 3+2 = ? we discover we need rational numbers as well.

Since @ is not on your keyboard we will write “Rat” to indicate rational numbers.

12

Rational numbers are exact in Racket

>

1

> 987654321/123456789

8

>

1

>

3/2
1

2

1

13717421
(/ 3 2)

1
2

Note that (/ 3 2) is division, while
3/2 is a way of expressing the number
one-and-a-half.

Try these in DrRacket, if you get results
that use decimal notation, you don’t
have correct language settings. Go
back to lecture LOO to see how to set
them correctly.

A

13

Nat, Int and Rat values can be arbitrarily large or small "\

> (x 987654321 123456789 999999999 7777777)
948364812868974190799673995382987

>

Some programming languages may limit the size of an integer to a range that is
related to how physical computers are organized (at least without using a special
package or library).

In Racket exact numbers can be as large or small as available memory allows.

We assume our computer is finite, but we can always add memory if we don't

have enough, hence “arbitrarily” and not “infinitely”.
14

quotient and remainder operations "\

> quotient 43 7) These operations provide Int division
6 without creating a Rat.

> (remainder 43 7) They only work on Ints (and therefore
1 Nats) and will produce an error if

applied to Rats.
> |

We say that quotient (or remainder) “consumes” two Ints and
“produces” an Int.

15

Types and subtypes "\

Nat, Int and Rat are types of numbers.
Some operations (e.g., remainder) are only valid on certain types of numbers.
Any Nat is also an Int. Any Int or Nat is also a Rat, we say:

e Nat is a subtype of Int, and
e Nat and Int are subtypes of Rat.

We can also write this relationship as: Nat € Int € Rat

If an operator or function works for a type it will automatically work for its subtypes.

The notion of a subtype is important in Computer Science and we will return to it
several times during the course.

16

max and min operators

(max 4 8 -9 3)=8
(min 4 8 -9 3)= -9

Like addition, subtraction, multiplication, and division these can operate on
multiple values, but unlike +, * and /, they can operate on one value:

(max 9)= 9
(min 9)= 9

A

17

sqgr and expt operators

> (sqr 12)
144

> (expt 3 4)
31

>

Exponentiation operators: x? and x”
122 = 144
3% =81

A

18

Real numbers (R) "\

Rational numbers are great if we just want to add, subtract, multiple, divide, and
use integer exponents, but as soon as we write 2”2 = V2 = ? we discover we need
irrational numbers as well, i.e. we need real numbers.

Unfortunately, irrational numbers can'’t be represented exactly in finite memory.

We'll come back to this problem in lecture LO2, when we discuss inexact numbers.

19

L01.2 Constant definitions

Martables Constants

In a math class we might write:
x =7
y =11
2% + 6zy + y* + 92 — 3y — 100

In a math class x and y are called “variables”, but in Racket we call them
“constants” because they are defined once and never change.

In Racket we can write:

(define x 7)
(define y 11)
(+ (sqr x) (* 6 xy) (sqr y) (* 9 x) (- (¥ 3 y)) -100)

21

We say that define "binds” a value to a name "‘

Untitled - DrRacket

S 8 Check Syntax ¢ Step > Run > Stop [l (def ine x 7)
e binds the value 7 to the
(+ (sqr x) (x 6 xy) (sqry) (x9 x) (- (x 3 y)) -100) name x
(define y (+ x 4))
\If\;ilgzr;;et:oB[e)gr;?\i(i:rﬁgt’S\tﬁcrjsélgp [Zﬁ%t[gr%];. memory limit: 512 MB. is evaluated in two
562 substitution steps:
g 1. x is substituted into
the definition to give (+
7 4)
All expressions are covered ¥ Show next tme? @ 2 (+ 7 4) Is evaluated
ooy it v swmsows) § togive 11 and y is

bound to that value.
22

Names must be defined before they are used

Untitled - DrRacket
Untitledv ~ (define ...)v p(E] Check Syntax ©«f Step [Run[> Stop il

(+ (sqr x) CHCER) S1)
(define B @)
(define [f| (M)

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 512 MB.
X 1s used here before its definition

>

Beginning Student custom v 1:8 492.19 MB D ﬂ

23

Once defined, names can’t be re-defined. "\

[N Untitled - DrRacket
Untitledv ~ (define ..) v wp(E) Check Syntax (D¢ Step [»] Run[> Stop [

(define x 7)
(define y 11)
(define x 8)
(+ (sqr x) (x 6 xy) (sqry) (x9 x) (- (x 3 y)) -100)

Welcome to DrRacket, version 7.0 [3m].
Language: Beginning Student [custom]; memory limit: 512 MB.

x: this name was defined previously and cannot be 2
re-defined

>

All expressions are covered Show next time? 6
Beginning Student custom v 3:8 326.24 MB D ﬁ

24

Use constants to avoid “magic numbers” "‘

(define lightspeed 299792458)
(define hours-in-day 24)
(define feet-in-mile 5280)

(define life-the-universe-and-everything 42)

Whenever a number has a meaningful name, you should define it as a constant.

25

LO1.3 Boolean expressions

What does “<” mean? "\

Consider the statement “x < 5”.

In a math class, it tells us something about x:
Whatever value x has, that value is less than 5.

We might combine the statement “x < 5” with the statements, “x is a natural

number”, “x is even” and “x is a perfect square” to conclude “x is 4”.

In Racket, “<” means something different, since a constant such as x already has
a value. In Racket “<” is an operator, like “+” or “sqr” and (< x 5) isjust a kind
of expression (called a “Boolean expression”).

27

What does “<” mean?

Suppose we define a constant:

(define x 2)

Using prefix notation we create a Racket expression equivalent to “x < 5”:
(< x 3)

This is asking “Is it true that the value of x is less than 57"

If we evaluate (< x 5), we substitute in the value of the constant, so our
expression becomes (< 2 5).

Since it is true that 2 < 5, the statement evaluates to true.

A

28

What does “<” mean? "\

Untitled - DrRacket

Untitledv ~ (define ..) v sp(E) Check Syntax 4 Step | Run[> Stop [l |f you get #tr ue Or
ggeilgt)% x 2) something other than

true, you don’t have the
correct language settings.
Follow the instructions in

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 512 MB. lecture LOO to set them
true

S correctly.

All expressions are covered v Show next time? @

Beginning Student custom v 4:2 3s1.62MB[| &

29

Boolean values (Bool) "\

The operators <, >, <=, >=, and = compare two numbers and produce a “Boolean”
value, a Bool.

(define x 4)

(< x 6) = isxlessthan 6?

(> x 6) = is x greater than 67

(= x 7) = isxequalto7?

(>= 5 x) = is 5 greater than or equal to x?
(<= 5 x) = is 5 less than or equal to x?

Each evaluates to true or false. These are the only possible values for a Bool.

30

Expressions with Boolean values "\

We combine Boolean values using the operators and, or, and not.

e and has value true when all of its arguments have value true; false otherwise.
e or has value false when all of its argument have value false; true otherwise.
e not has value true ifits argument is false; false if its argument is true.

Both or and and require at least two arguments, but may have more.

(and (or (< 2 3) (> 1 5)) (not (< 10 15)) (<= 5 5))
(and (or true (> 1 5)) (not (< 10 15)) (<= 5 5))
(and true (not (< 10 15)) (<=5 5))

(and true (not true) (<= 5 5))

(and true false (<= 5 5))

false

1440414

31

Short-circuit evaluation "\

We could equivalently define and and or as:

e and has value false if any of its arguments have value false; true otherwise.
e or has value true if any of its arguments have value true; false otherwise.

Under this definition we may not need to fully evaluate all subexpressions:
(or (< 2 3) (>1 5)) = (or true (> 1 5)) = true

(and true (not true) (<= 5 5)) = (and true false (<= 5 5))= false

Exploiting this definition to reduce the number of substitution steps is called “short-circuit
evaluation”.

32

De Morgan's Laws "\

For Boolean expressions A and B:
(not (and A B)) isequivalentto (or (not A) (not B))

(not (or A B)) isequivalentto (and (not A) (not B))

For example:

(not (or (< 2 3) (> 1 5)))
(and (not (< 2 3)) (not (> 1 5)))
(and (>= 2 3) (<=1 5))

Discovered by British mathematician Augustus De Morgan (1806 - 1871).

33

Lecture 01 Summary

What happens next? "\

Over four lectures we will develop our model of computation:

1. Values and expressions
2. Functions

3. Conditional expressions
4. Recursion

After the final step, we will have built a complete “computer”, essentially from math.

We will then add “lists” to our model of computation to simplify data organization.

We will then explore a variety of basic algorithms and data structures using lists.

35

LO1: You should know

Exact numbers: Nat, Int, and Rat. Subtype relationships.
Writing Racket mathematical expressions in prefix notation
Applying substitution steps to evaluate Racket expressions
Defining Racket constants with define

Operators: +, -, *, /, quotient, remainder, sqr, expt
Operators: max and min

Operators: <, >, =, <=, >=

Bool expressions with true, false, and, or, not

36

LO1: Allowed constructs "\

() + - * / =< > <= > and define expt false max min not or
quotient remainder sqr true Bool Int Nat Rat

Each lecture ends with a list of “allowed constructs”, which grows over the term.

The front page of each assignment indicates the allowed constructs for that
assignment. For example “Allowed constructs: LO9” meas that you can use any
construct listed for Lecture 9. Other restrictions may also be listed on the first page
of an assignment, so make sure you read the entire first page before starting.

If you spot a missing construct, let us know on Piazza, but the answer to the
question, “Can | use ...?” is normally “Is it on the list of Allowed Constructs”.

37

