Functions
CS135 Lecture 02

L02.0 Function definitions

Function definitions in mathematics "‘

flz) = 2*°+3z+4
g(z,y) = 2*+ 6y +y*+ 9 — 3y — 100

An application of a function supplies arguments for the parameters, which are
substituted into the algebraic expression:

9(2,3) = 2°46-2-3+34+9:-2—-3-3-100 = —42

An argument is substituted each time the associated parameter is used. The
arguments supplied may themselves be applications:

9(f(2), f(3)) = ¢(14,22) = 2488

Translating to Racket with define and prefix notation "\

(define (f x) (+ (* x x) (* 3 x) 4))

(define (g x y)
(+ (sqr x) (* 6 xy) (sqr y) (* 9 x) (- (*¥ 3 y)) -100))

(g 2 3)

(g (£ 2) (£ 3))

® @ Untitled 3 - DrRacket

Untitled 3w (define ..) v &p(=] Check Syntax (¢f* Step[»| Run[> Stop ['\
(define (f x) (+ (* x x) (x 3 x) 4)) '\

(define (g x y)
(+ (sqr x) (x 6 xy) (sqr y) (x 9 x) (- (x 3 y)) -100))

(g 2 3)

(g (f 2) (f 3))

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 512 MB.
—42

2488

> (g 0 Q)

-100

> |

All expressions are covered Show next time? 6

Beginning Student custom v 72 483.57 MB I:\ %

Defining functions

A function definition consists of:
e a name for the function,
e a list of parameters,
e a single body expression.

The body expression typically uses the
parameters together with other built-in
and user-defined functions.

A

(define (g x y) (+ x vy))

“binds” name parameter(s) I
to body
name body
A/(expression)
glx,y) Fx+y

Substitution steps "\

(define (f x) (sgr x)) When faced with choices of
(define (g xy) (+ xvy)) substitutions:

1. Apply function definitions only
(g (g1 (+12)) (£ 3)) when all arguments are
=(g (g1 3) (£ 3)) simple values, like numbers
=(g (+ 1 3) (£ 3)) and Boolean values.
=(g 4 (£ 3)) 2. When you have a choice,
= (g 4 (sgr 3)) take the leftmost one.
=(g 4 9)
=(+ 4 9)

=13

Applying user-defined functions

1) An application of a user-defined function substitutes arguments for the
corresponding parameters throughout the definition’s expression.

(define (g x y) (+ x y))
The substitution for (g 3 5) would be (+ 3 5).

2) All instances of a parameter in the body are replaced in a single step:
(define (h xy) (+ x x x y))
The substitution for (h 10 9) would be (+ 10 10 10 9).

Predicates "\

Functions that produce Bool values are called “predicates”.

(define (cold? t) (< t 8))

(define (cool? t) (and (< t 16) (not (cold? t))))

(define (hot? t) (> t 30))

(define (warm? t) (not (or (cold? t) (cool? t) (hot? t))))

By convention, the names of predicates end in a “?”.

Notice how cool? is defined in terms of cold?, and warm? is defined in terms of
the other functions.

Identifiers "\

The identifiers that name constants, functions and parameters follow some rules:

e I|dentifiers can contain letters, numbers, -, , ., 2, =, and some other
characters.

e Identifiers cannot contain spaces, brackets of any kind, or quotation marks
like ' ".

e |dentifiers must contain at least one non-number.
|dentifiers should be meaningful, when possible.

f, ?,x-ray, wHaTeVeR, hello!, and 2d are all valid identifiers.

10

Observations "\

As with Mathematical functions...

Changing names of parameters does not change what the function does. These
functions have the same behavior:
(define (f x) (* x x)) and (define (f z) (* z z))

Different functions may use the same parameter name:
(define (f x) (* x x)) and (define (g xy) (- x vy))

Parameter order matters. The following two functions are not the same:
(define (g x y) (- x y)) vS. (define (g y x) (- x vy))

1

L02.1 Substitution rules

Substitution rules "\

We now make our model of computation more formal by more precisely defining a
set of substitution rules. The substitution process repeatedly simplifies the
program. At each step, the result is a valid (but simpler) Racket program. It
eventually simplifies to a value.

We are defining a mathematically oriented model of computation that is
independent of any specific physical computer, but it still accuracy reflects abilities
and limitations of physical computers.

We will add additional rules in the next lecture.

13

Rule 0: Application of built-in functions "\

A substitution step finds the leftmost/inner subexpression, with no
parentheses inside, and rewrites it by replacing the subexpression by its value.

(+ (* 3 2) 5) = (+ 6 5)=11
(expt 2 10) = 1024

Formally, the substitution rule is:
(fv,..v) =y,

where fis a built-in function, (except Boolean operators)
v, ... v_are values,

1
and vis the value of (f v, ... v).

14

Ellipses... "\

For built-in functions f with one parameter, the rule is:
(f v,) = v, where fis a built-in function, v, is a value, and v is the value of (f v,)

For built-in functions f with two parameters, the rule is:
(f v, v,) =V,
where fis a built-in function, v, and v, are values, and v is the value of (f v, v,).

For built-in functlons f with three parameters, the rule is:

(f v, v,v,) =
where fis a built-in function; V,, V,, v, are values; and v is the value of (f vV, V,V,).

We can’t keep writing down rules forever, so we use ellipses in Rule 0 to show the pattern:
(fv,...v) =y,
where fis a built-in function, v, ... v_are values, and v is the value of (f v, ... v).

15

Rule 1: Application of Boolean operators "\

(and true true ... false..) = false “short circuit” evaluation
(and true true ... true) = true all arguments have value true
(or false false ... true..) = true “short circuit” evaluation
(or false false ... false) = false all arguments have value false

(not true)= false
(not false) = true

Here the ellipses are not showing patterns, but showing omissions.

16

Rule 2: Application of user-defined functions "‘

(fv,..v)=¢€
where (define (fx, ...x) e) occurs to the left/above,
and e’ is obtained by substituting into the expression e,
with all occurrences of the parameter x;replaced by the value v, (1 </ = n).

(define (f x y) (* x y (sqr y)))
(£ (-31) (+12))

=S(fF 2 (+12))

= (£ 2 3)

=(* 2 3 (sqr 3))

=(* 2 3 9)

= 54

17

Substitution steps

(define (cold? t)
(define (cool? t)

(define (hot? t)

(define (warm? t)

(warm? 32)

(not (or
(not (or
(not (or
(not (or
(not (or
(not (or
(not (or

L R 2 T

false

(< 32
false
false
false
false
false
false

(not true)

(< t 8))

(and (< t 16) (not (cold? t))))

(> t 30))

(not (or (cold? t) (cool? t) (hot? t))))

(not (or (cold? 32) (cool? 32) (hot? 32)))

8) (cool? 32) (hot? 32)))

(cool? 32) (hot? 32)))

(and (< 32 16) (not (cold? 32))) (hot? 32)))
(and false (not (cold? 32))) (hot? 32)))
false (hot? 32)))

false (> 32 30)))

false true))

A

rule 2
rule 2
rule 0
rule 2
rule 0
rule 1
rule 2
rule 0
rule 1
rule 1 18

Constant definitions

Constants can be viewed as a special case of rule 2:

(define x 3)
(define y 4)

(+

(* x y)
(+ (*
(+ (*
(+ 12
(+ 12
(+ 12
= 28

1440414

(* 4 y))

3y) (* 4y))
34) (*4y))
(* 4 y))

(* 4 4))

16)

19

Constant definitions "\

The right hand side of constant definitions must be simplified to a value before
they are substituted into an expression.

(define x (* 3 4))
(+ x 10)

=

(define x 12)
(+ x 10)

—

(define x 12)
(+ 12 10)

20

L02.2 Inexact numbers

Inexact numbers "\

Rational numbers are great if we just want to add, subtract, multiple, divide, and
use integer exponents, but as soon as we write 2”2 = V2 = ? we discover we need
irrational numbers as well, i.e. we need real numbers.

Unfortunately, irrational numbers can'’t be represented exactly in finite memory.

Instead, DrRacket uses an approximate representation of inexact numbers built
into the physical hardware of the computer called “floating point” numbers.

> (sqrt 2)
#11.4142135623730951

>
The #1i tells us the result is inexact

22

Inexact numbers and the Num type "\

The range of an inexact number is roughly +2.23x1073%8 to +1.80x 10308

The precision of an inexact number is roughly 16 decimal digits We say “roughly”
because physical computers really work in binary (base 2) rather than decimal.

Inexact numbers can take on some unexpected values, including values that
represent “Not a Number” (NaN) and “Infinity”. You shouldn’t see these.

When we say “number” in CS135, we mean it could be a natural number, an
integer, a rational number, or an inexact number. When we want to indicate that a
function could produce or consume any type of number, we write Num.

The number? predicate tests if something is a Num (and not a Bool, for example).

23

Built-in Math Functions A\

Racket has lots of built-in math functions that will be familiar to you.These all
consume a Num and produce a Num.

abs absolute value of a Num

sqrt square root of a Num

log base-e logarithm of a Num

exp e raised to a Num

cos, sin, tan trig functions consume an angle in radians

acos, asin, atan the inverse trig functions produce an angle in radians
Racket also provide constant values pi and e.

The inexact? predicate determines if a Num is inexact. Similarly, the predicate
integer? tests for Int and boolean? tests for a Bool.
24

Remember that inexact numbers are not exact "\

The mathematical properties you expect may not be true with inexact numbers.

> (sin pi)
#11.2246467991473532e-16
> (= (sin pi) 0)

false

>

In particular, never test inexact numbers for equality.
1.2246467991473532x1071° # 0

Instead, check that numbers are “close enough™. (< (abs (- x y)) 0.0001)

25

L02.3 Comments

Programs as communication "\

Every program is an act of communication:

e Between you and the computer
e Between you and yourself in the future
e Between you and others

When we write programs, we communicate with the computer to say exactly what
it shall do. For other programmers, we want to communicate other things, such as:

e \What are we trying to do?
e \Why are we doing it this way?

We communicate with other programmers and our future selves using comments.

27

Writing comments in Racket

Comments let us write notes to ourselves or other programmers.

Comments start with a semicolon (;) and extend to the end of the line.

;; By convention, please use two semicolons, like
;; this, for comments which use a whole line.

;; By convention, comments after code use one semicolon.

(* pi1 r r) ; computing the area of a circle
(define freezing 0) ; freezing point of water
(define boiling 100) ; boiling point of water

28

Formatting your assignment submissions "\

Each file you submit should start with a header to identify yourself, the term, the
assignment and the problem. There is no specifically required format, but here’s
one acceptable way to format the header:

kkhkkkkkhkkkkkkhkkkkkkhkkhkkkkkkkkkhkkkkkkhkkkkkkhkkkkkkhkkkkkhkkkkk

;; Chet G Peaty (01234567)
;; CS 135 Fall 2025

;; Assignment 03, Problem 4
khkkkkkkkkkkkkkkkkhkkkkhkkkhkkkhkkkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkk*k

29

Formatting your assignment submissions "\

If the assignment asks for multiple solutions in the same file, put them in the same
order as the assignment, separated by a comment.
;; Question 4. Part a.

e o
r 7

Each function should be preceded by a comment that describes its purpose.
;; produce a value that is twice as large as n
(define (twice n) (* 2 n))

In addition, keep your line lengths no longer than 102 characters, the default
maximum in DrRacket. Overly long lines are hard to read.

30

Complete assignment AO1 formatting example "\

°
4

°
4

°
14

°
4

°
4

°
14

khkkkkkkkkkhkkkhkkhkkkhkkkkkkhkkkkkkkhkkkkkkkkkkkkkkkkkhkkkkkk*k

Chet G Peaty (01234567)
CS 135 Fall 2025

Assignment 03, Problem 4
Kkkhkkhkkhkkhkhkhkkhhkkhkhkhkkhkhkkkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk

Question 4. Part a.

;; produce a value that is twice as large as n
(define (twice n) (* 2 n))

31

Block comments "\

Sometimes it's useful to “comment out” a section of a program. There are two
options to do this quickly:

1) Select the text and use the Racket — Comment Out with Semicolons command

2) Use a multi-line comment:

|
(define (function-to-temporarily-remove x y)
(+ xy)) |#

Never never use Racket — Comment Out with a Box or we won’t be able to mark
your assignment and that will make you unhappy.

32

Lecture 02 Summary

What happens next? "\

Over four lectures we will develop our model of computation:

1. Values and expressions
2. Functions
3. Conditional expressions
4. Recursion

After the final step, we will have built a complete “computer”, essentially from math.
We will then add “lists” to our model of computation to simplify data organization.

We will then explore a variety of basic algorithms and data structures using lists.

34

L02: You should know "\

How to define functions in Racket with define
How to apply user-defined functions
Predicates and the ? convention

Formal substitution rules for:
o built-in functions, which include the operations we learned in Lecture 01;
o Boolean expressions; and
o user defined function

Inexact numbers and types of numbers: Nat vs. Int vs. Rat vsS. Num
Math functions: abs acos asin atan cos exp log sin sqrt tan
Math constants: e pi

The number? predicate. The inexact? predicate.

How to format your assignments for submission

35

L02: Allowed constructs "\

Newly allowed constructs:
; abs acos asin atan boolean? cos define (functions) e exp
inexact? integer? log number? pi rational? sin sqrt tan Num

Previously allowed constructs:

() + - * / =< > <= >=

and define (constants) expt false max min not or quotient
remainder sqr true Bool Int Nat Rat

36

