Conditional expressions
CS135 Lecture 03

L03.0 cond and else

Conditional expressions in mathematics. "\

:, 2“
e, T ISR
—1 0 1 2

Sometimes expressions should take
one value under some conditions, and
other values under other conditions.

A sin-squared window, used in signal
processing, can be described by the
following piecewise function:

f(x) =

<

p

0 forx <0
1 for x > 1

sin®(xm/2) for0 < x <1

Conditional expressions in Racket "\

We can compute the sin-squared window function with a cond expression:
(define (f x)
(cond [(< x 0) 0]
[(>= x 1) 1]
[(and (<= 0 x) (< x 1)) (sqr (sin (* x pi 1/2)))1))

Each argument to cond is a question/answer pair.

The question is a Boolean expression

The answer is a possible value of the conditional expression.

By convention, square brackets are used around each question answer pair
to improve readability. (The stepper might change these to round brackets.)

Substitution steps (1 of 3) "‘

(define (f x)
(cond [(< x 0) 0]
[(>= x 1) 1]
[(and (<= 0 x) (< x 1)) (sqr (sin (* x pi 1/2)))1))
(£ 1/2)

=
(cond [(< 1/2 0) 0]
[(>= 1/2 1) 1]
[(and (<= 0 x) (< x 1)) (sqgr (sin (* 1/2 pi 1/2)))1))

Substitution steps (2 of 3) "\

=
(cond [false 0]
[(>= 1/2 1) 1]
[(and (<= 0 x) (< x 1)) (sgr (sin (* 1/2 pi 1/2)))]))

=
(cond [(>= 1/2 1) 1]
[(and (<= 0 x) (< x 1)) (sgr (sin (* 1/2 pi 1/2)))1]))

=
(cond [false 1]
[(and (<= 0 x) (< x 1)) (sgr (sin (* 1/2 pi 1/2)))1))

Substitution steps (3 of 3) "\

= (cond [(and (<= 0 x) (< x 1)) (sgr (sin (* 1/2 pi 1/2)))1))
= (cond [(and true (< x 1)) (sqr (sin (* 1/2 pi 1/2)))1))

= (cond [(and true true) (sqgqr (sin (* 1/2 pi 1/2)))1))

= (cond [true (sqr (sin (* 1/2 pi 1/2)))1))

= (sqr (sin (* 1/2 pi 1/2)))

= (sqgr (sin (* 1/2 #i3.141592653589793 1/2)))

= (sqr (sin #i0.785398163397448))

= (sqr #i0.7071067811865475)

= #310.4999999999999999

else "\

Suppose our substitution steps reach:
... = (cond [false ..])
The next step would be an error since there are no more question/answer pairs.

The last answer in a cond usually covers the case that none of the other question
is true. For this last question we conventionally use the special construct else.

(define (f x)
(cond [(< x 0) 0]
[(>= x 1) 1]
[else (sgr (sin (* x pi 1/2)))1))

Substitution rule #4: cond expressions "‘

(cond [false e¢] ...) = (cond ...)

(cond [true €] ...) = ¢

(cond [else ¢e]) = e

As you can see, we don’t really need else. We could just use true as the last

question in a cond, but else makes it clearer that this last answer covers all
remaining cases.

else followed by cond A\

Sometimes people write code with an else followed by another cond, perhaps
reflecting their thought process

(define (f x)
(cond [(< x 0) 0]
[else (cond
[(>= x 1) 1]
[else (sqgr (sin (* x pi 1/2)))]1)1))

When you submit your code for assignments, the submission system may ask you
to simplify your solution by removing the unnecessary else (cond ..)

10

LO3.1 Symbols

What to wear?

In Waterloo, temperatures can range from -34C to +38C.
e Ifit's cold, I'll wear a jacket.
e |[fit’s cool, I'll wear sweater.
e Otherwise, I'll just wear a shirt.

Write a function that consumes a temperature (t) and produce what to wear?
(define (cold? t) (< t 8))

(define (cool? t) (and (< t 16) (not (cold? t))))
(define (what-to-wear t) (777)

A

12

What to wear? Attempt #1: Define constants

(define
(define

(define
(define
(define

(define
(cond

(cold? t) (<K t 8))
(cool? t) (and (< t 16)

jacket 0)
sweater 1)
shirt 2)

(what-to-wear t)

[(cold? t) jacket]
[(cool? t) sweater]
[else shirt]))

(not (cold? t))))

A

13

What to wear? Attempt #2: Use symbols

(define (cold? t) (<K t 8))
(define (cool? t) (and (< t 16) (not (cold? t))))

(define (what-to-wear t)
(cond [(cold? t) 'jacket]
[(cool? t) 'sweater]
[else 'shirt]))

14

Symbols "\

Racket allows one to define and use symbols (or Sym) which have meaning to us
(but not to Racket).

A symbol is defined using a leading apostrophe or ‘quote’. 'CS135.
'CS135 is a value just like 0 or 135, but it is more limited computationally.

Symbols allow us to avoid using constants to represent names of clothes, courses,
colours, planets, or types of music.

Unlike numbers, symbols are self documenting — you don’t need to define
constants for them. This is the primary reason we use them.

Hidden away in Racket, a symbol is still represented by a number, but it's value is
not important externally.

15

Symbols "\

Symbols can be compared using the predicate symbol=?.

(define home 'Earth)
(symbol=? home 'Mars) = false

The predicate symbol? produces true if and only if its argument is a symbol.

(define mysymbol 'blue)

(symbol=? mysymbol 'blue) = true
(symbol=? mysymbol 'red) = false
(symbol=? mysymbol 42) = error
(symbol? mysymbol) = true
(symbol? 42) = false

16

L03.2 Testing

Testing "\

To write correct functions we first need to understand the problem we are trying
to solve. To help understand a problem, we can start by writing some test cases.

e Ifit’s cold, I'll wear a jacket.
e Ifit’s cool, I'll wear sweater.
e Otherwise, I'll just wear a shirt.

Suppose you don’t know what a person considers “cool” and “cold”, what would
you expect the following to produce?

(what-to-wear -34)

(what-to-wear 38)
(what-to-wear 12)

18

Testing

e Ifit's cold, I'll wear a jacket.
e |[fit’s cool, I'll wear sweater.
e Otherwise, I'll just wear a shirt.

Suppose we know a person considers less than 8C to be “cold” and less than 16C
to be “cool”, what would you expect the following to produce?

(what-to-wear
(what-to-wear
(what-to-wear
(what-to-wear

7)
8)
15)
16)

A

19

Testing with check-expect "\

check-expect is a special Racket language feature we use for testing.

(check-expect expr-test expr-expected) consumes two expressions:
e expr-testis the expression (usually a function application) we are testing.
e expr-expected is the expected result; the “correct answer”.

(check-expect (what-to-wear -34) 'jacket)
(check-expect (what-to-wear 8) 'sweater)
(check-expect (what-to-wear 38) 'shirt)

This helps us understand the function, and demonstrates that it works correcily.

20

[BON] Untitled - DrRacket
Untiiedw (define ..) v p(E) Check Syntax ¢ Step [»] Run[> Stop [

(define (cold? t) (< t 8))
(define (cool? t) (and (< t 16) (not (cold? t))))

(define (what-to—-wear t)
(cond [(cold? t) 'jacket]
[(cool? t) 'sweater]

[else 'shirt]))

(check-expect (what-to-wear -34) 'jacket)
(check-expect (what-to-wear 8) 'sweater)
(check-expect (what-to-wear 38) 'shirt)

Welcome to DrRacket, version 7.0 [3m].
Language: Beginning Student [custom]; memory limit: 512 MB.

All 3 tests passed!
>

All expressions are covered Show next time? @
Beginning Student custom v 3:19 542.24 MB [:‘ %

21

Testing

To write correct functions we first need to understand the problem.

Writing test cases:
...before we write a function,
helps us to understand the problem
...after we write a function,
helps us to demonstrate that the function is correct

In CS135 we often call test cases written before the function “examples”. For
complex problems, it helps to start by solving some examples by hand.

We will write lots of examples in CS135.

22

Testing with check-within "\

check-within is a special Racket language feature like check-expect.

(check-within expr-test expr-expected delta) consumes three expressions:
e expr-testis the expression (usually a function application) we are testing.
e expr-expected is the expected result.

e (eltais the allowed absolute difference between expected and actual results.

(check-within (sqrt 2) 1.414 0.001)
(check-within (£ 1/2) 0.5 0.0001)

For the check to succeed, the actual value of expr-test must be within delta of
expr-expected. In CS135, the value of delta is usually defined by the problem.

23

Write test cases before writing your function (“examples”) "\

Before you write your function, always write test cases to make sure that you
understand the problem (sometimes called “examples”).

Work out the answers by hand. It will really help your thought processes.

Try to think of “boundary cases”, places where the function may change its
behavior, e.g. freezing (0C). Try to think about what the function should do with
extreme examples, e.g., very cold , very hot, exactly 100C, etc.

The more you think about test cases before writing your function, the better you
will understand the problem, and the easier it will be to solve.

24

Test for code coverage after writing your function. "\

After you write your function, write any additional test cases that are necessary to
cover the boundary cases in cond expressions. For each question/answer pair
(except else) there should be at least one test case where the question is true
and at least one test case where the question is false.

It's hard to test too much. At a minimum, assignment submissions must test all
boundary cases in cond expressions to provide full coverage (no highlighting).

25

L03.3 Contracts

Contract "\

A contract formally defines what type of arguments a function consumes and what
type of result it produces. A contract is written as a comment before the function

definition.

;7 g: Num Num -> Num
(define (g x y)
(+ (sqr x) (* 6 xy) (sqry) (* 9 x) (- (¥ 3 y)) -100))

;; cool?: Num -> Bool
(define (cool? t) (and (< t 16) (not (cold? t))))

Types can be: Bool, Int, Nat, Num, Rat, or Sym (with more to come)

27

Contracts with Sym "\

We usually write

;; what-to-wear: Num -> Sym

If we want to be very precise, we can also write

;; what-to-wear: Num -> (anyof 'jacket 'sweater, 'shirt)

At this point in the course, the first version is acceptable unless we specifically
request anyof in an assignment or exam.

28

Extra requirements "\

Sometimes a function will have limitations that can’t be captured by our formal
contract notation. These requirements can be captured by a “requires” clause.

For example, it's not physically possible for temperatures to be below absolute
zero (-273.15C).

;; what-to-wear: Num -> Sym
;; Requires: temperature >= -273.15
define (what-to-wear temperature)...

While this is not too important here, it will become important for some functions.

29

L03.4 Assignment Submission

Assignment submissions (after L03, i.e, A02) "\

Each function you write should include:

Purpose (What does the function do? What does it produce and consume?)
Contract

Function definition

Test cases that provide full test coverage.

e\

Write your your name, student id, term and question number at the top.
For questions with multiple parts (a, b, c, etc.) label each part.

More details can be found in our style guide.

31

CS135 Style Guide

B CS135> Assignments > Style Guide

N CS135
STYLE GUIDE

Style Guide

The CS135 style guide should help you write better code and make it easier for you
to complete your assignments quickly. It pulls together material from lectures LO1
to L04, along with additional examples and explanations.

Assignment submission
requirements are
summarized in out style
guide.

It is your responsibility to

read and follow the guide.

https://student.cs.uwaterloo.ca/~cs135/assign/style quide/index.html

32

https://student.cs.uwaterloo.ca/~cs135/assign/style_guide/index.html

Assignment submission example

;; Question 6b)
;; Determine what to wear based on the temperature
;; what-to-wear: Num -> Sym

(define (what-to-wear temperature)
(cond [(< temperature 8) 'jacket]
[(< temperature 16) 'sweater]
[else 'shirt])) continued...

33

Assignment submission example (continued)

(check-expect
(check-expect
(check-expect
(check-expect
(check-expect
(check-expect
(check-expect

(what-to-wear
(what-to-wear
(what-to-wear
(what-to-wear
(what-to-wear
(what-to-wear
(what-to-wear

-34) 'jacket)
12) 'sweater)
38) 'shirt)
7) 'Jacket)
8) 'sweater)
15) 'sweater)
16) 'shirt)

A

34

Assignment Grading (unless otherwise stated) "\

Purpose: 5% of available points
Contract: 5% of available points
Test coverage: 10% of available points

Correctness: 80% of available points

Correctness is measured by the proportion of our test cases your code passes.

Applies to assignments after AO1.

35

Lecture 03 Summary

What happens next? "\

Over four lectures we will develop our model of computation:

1. Values and expressions
2. Functions

3. Conditional expressions
4. Recursion

After the final step, we will have built a complete “computer”, essentially from math.
We will then add “lists” to our model of computation to simplify data organization.

We will then explore a variety of basic algorithms and data structures using lists.

37

L03: You should know

How to use conditional expressions
o How to write question/answer pairs with cond, else
o Substitution rules for conditional expressions.
o How to step a conditional expression.
How to use symbols
o How to produce and consume symbols
O Sym, symbol?, symbol="?
How to test your functions
0 check-expect, check-within
o How to identify boundary cases from a cond.
How to define and understand contracts

What to include in your assignment submissions (to L03).

38

LO3: Allowed constructs "\

Newly allowed constructs:

[1(surrounding question/answer pairs)

check-expect check-within cond else symbol? symbol=? zero?
anyof Sym

Previously allowed constructs:

() + - * / =< > <= >= ;

abs acos and asin atan boolean? cos define e exp expt false
inexact? integer? log max min not number? or pi quotient
rational? remainder sin sqr sqrt tan true

Bool Int Nat Num Rat

39

