
Recursion
CS135 Lecture 04
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L04.0 One weird trick
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Sum of the natural numbers up to n
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Sum of the natural numbers up to n

From your math courses you might know:

But what does the “...” mean? What is it telling us to do?

Informally, the “...” describes a computation. It says, “start at zero and add 
increasing natural numbers until you reach n.

The result of this computation is the sum of the natural numbers up to n.
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Sum of the natural numbers up to n

Let’s try to describe this computation without resorting to informal notation (“...”).

Let f(n) be the sum of the natural numbers up to n.

If we look closely, we can see this equation is made of two parts:
1. the sum of the natural numbers up to n - 1,
2. plus n.
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Sum of the natural numbers up to n

If we include the case that f(0) = 0, then we get:

We have defined f(n) in terms of itself.

This function more precisely defines the computation that was implicit in the “...”.
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Sum of the natural numbers up to n
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Sum of the natural numbers up to n
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We can convert this equation directly into Racket:

;; Sum the natural numbers up to n.
;; sum-to: Nat -> Nat 
(define (sum-to n)
  (cond [(zero? n) 0]
        [else (+ n (sum-to (sub1 n)))]))
(check-expect (sum-to 4) 10)
(check-expect (sum-to 8) 36)
(check-expect (sum-to 13) 91)
(check-expect (sum-to 0) 0)



Recursion

A function defined in terms of itself in this way is called recursive. Typically, the 
arguments of a recursive call get “smaller” in some way until it reaches a “base 
case”. In the case of sum-to, the argument gets smaller by one, until it reaches 
the base case of zero.

The predicate zero? is true if its argument is 0; false otherwise.

The function sub1: Num -> Num subtracts 1 from its argument.

In the rest of this lecture we will use sub1 to make arguments smaller and zero? 
to test the base case.
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One weird trick

It is a central result in the theory of computation that (informally stated) anything a 
computer can compute we can now compute, since we have:

1. arbitrarily large numbers,
2. conditional expressions, and
3. recursion.
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Our model of computation is “Turing complete”

Very informally, a model of computation is Turing complete if it can compute 
anything that any other computer can, given enough time and memory.

All the phone, laptops, and other computers in the room are Turing complete. Our 
model of computation, with its carefully defined substitution steps that can be 
carried out with a pencil and paper, is just as powerful. But much slower.

A Turing complete model of computation is as expressive as any other—it can 
carry out any computation that any other computer can, given enough time and 
memory.
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Alan Turing (1912-1954)

In a 1936 paper, British mathematician 
Alan Turing showed that a simple abstract 
machine—now called a Turing 
machine—can perform any computation 
that any other programmable computer 
can, laying the foundation for the concept 
of Turing completeness.

We will learn more about Alan Turing, and 
his role in the foundation of the field of 
Computer Science in the history lecture at 
the end of the term.
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L04.1 The Rules for Recursion
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Recursion can be hard to get right
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For now, we will keep recursion as simple as possible. We will always follow the 
same basic template:

(define (natural-template n)
  (cond
    [(zero? n) ...]
    [... ...]
    [else (... n ... (natural-template (sub1 n)))]))

In this case the ellipses (“...”) just mean that we can add problem-specific code at 
those positions.



Three properties of functions we consider in CS135

1. Termination. Our template guarantees termination. Since the argument gets 
smaller by one, it eventually reaches the base case of zero. 

2. Correctness. We could prove the correctness of sum-to by induction. If 
you’ve seen proof by induction in a math class, you may be able to construct 
a proof yourself. In this class we use testing to help ensure correctness.

3. Efficiency. In CS135 we measure efficiency by the number of substitution 
steps, as measured by the stepper.
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The number of substitution steps, as measured by the stepper
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64 steps



Rules for recursion (first version)

1. Change one argument closer to termination while recurring. No other 
arguments can change.

2. When recurring on a natural number use (sub1 n) and test termination with 
zero?

In this version, the argument in #1 is always the same argument.

This is the first version of our rules. Will be develop a final version over the coming 
lectures.
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L04.2 Names and scope
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Scope

Now that we have functions defined in terms of themselves, it’s worth thinking a 
little more about the names used for functions, parameters and contents 
(collectively called identifiers) especially when the same identifier is used multiple 
times.

The scope of an identifier is where it has effect within the program.
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Scope

Two kinds of scope (for now):
global and function

The smallest enclosing scope has priority

Duplicate identifiers within the same scope will 
cause an error:

(define f 3)
(define (f x) (sqr x)) 
Racket Error: f: this name was...
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Scoping tools in DrRacket

DrRacket can help you determine an identifier’s scope.
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L04.3 Our design recipe
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Example: The product of the natural numbers to n
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Called “n factorial” and written “n!”. The value grows quickly as n increases.

There is no simple formula for n!. We just have to compute it.

We start multiplying from 1. If we started from 0, n! would be easy to compute.

To make things simple, we assume 0! = 1, which is a widely accepted definition.



Start by writing a purpose, contract and header

From the mathematical definition we that the factorial function will consume a Nat 
and produce a Nat. An obvious name is factorial but ! would also be fine.

;; Compute n!
;; factorial: Nat -> Nat
(define (factorial n) ...)

The purpose should indicate what the function produces and consumes, unless it 
is clear from the contract.

The contract tells us how the function is used.

The header gives the name of the function and name(s) for the parameter(s).

The body of the function will replace the ellipses (“...”)..
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Write example test cases to aid understanding 

;; Compute n!
;; factorial: Nat -> Nat
(define (factorial n) ...)

(check-expect (factorial 3) 6)
(check-expect (factorial 5) 120)
(check-expect (factorial 7) 5040)
(check-expect (factorial 0) 1)
(check-expect (factorial 1) 1)

The last two examples are reasonable boundary cases. We don’t need to worry 
about negative numbers or inexact numbers because the function consumes Nat.
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Mathematical definition of f(n) = n!

To define the body, let’s look at the mathematical definition of n!

Think about f(1).

Think about f(3).

How would this function translate to Racket?
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Starting with a template, write the body of the function

To write the function body, we can start with the template and fill in names from the 
header.

(define (factorial n)
  (cond
    [(zero? n) ...]
    [... ...]
    [else (... n ... (factorial (sub1 n)))]))
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Starting with a template, write the body of the function

We can write the rest of the body from the mathematical definition.

(define (factorial n)
  (cond
    [(zero? n) 1]
    [else (* n (factorial (sub1 n)))]))
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Putting it all together

;; Compute n!
;; factorial: Nat -> Nat
(define (factorial n)
  (cond
    [(zero? n) 1]
    [else (* n (factorial (sub1 n)))]))
(check-expect (factorial 3) 6)
(check-expect (factorial 5) 120)
(check-expect (factorial 7) 5040)
(check-expect (factorial 0) 1)
(check-expect (factorial 1) 1)
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Write additional tests, if needed

After putting the pieces together, you might discover a boundary case you missed, 
or that otherwise your examples don’t provide full coverage.

As a last step, add additional test cases.

For factorial our initial tests provide full coverage.
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Our design recipe

We follow this “design recipe” when solving problems in CS135.

1. Write down the purpose of the function. Understand the problem.
2. Write a contract and header for the function.
3. Write examples to aid understanding (work them out by hand).
4. Starting with a template, write the body of the function.
5. Write additional tests, if needed, especially to catch boundary cases.

Initially, we will be explicit in following these steps. Later, you can do many of the 
steps in your head, but you can always fall back to this explicit design recipe if you 
are having trouble with a problem.
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A simpler name?

;; Compute n factorial (n!)
;; !: Nat -> Nat
(define (! n)
  (cond
    [(zero? n) 1]
    [else (* n (! (sub1 n)))]))
(check-expect (! 3) 6)
(check-expect (! 5) 120)
(check-expect (! 7) 5040)
(check-expect (! 0) 1)
(check-expect (! 1) 1)

This name is simpler, but is it better?
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Lecture 04 Summary
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What happens next?

Over four lectures we will developed our model of computation:

1. Values and expressions
2. Functions
3. Conditional expressions
4. Recursion

After the final step, we will have built a complete “computer”, essentially from math.

We will then now add “lists” to our model of computation to simplify data 
organization.

We will then explore a variety of basic algorithms and data structures using lists.
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L04: You should know

● How to use our design recipe to write functions
● How to write recursive functions following version 1 of the Rules for Recursion
● How to use zero? and sub1 to write recursive functions
● How the Rules for Recursion (version 1) guarantee termination
● How to use the stepper to measure efficiency.
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L04: Allowed constructs

Newly allowed constructs:
sub1
Recursion (following the first version of the rules) 

Previously allowed constructs:
( ) [ ] + - * / = < > <= >= ;
abs acos and asin atan boolean? check-expect check-within 
cond cos define e else exp expt false inexact? integer? log 
max min not number? or pi quotient rational? remainder sin 
sqr sqrt symbol? symbol=? tan true zero?
anyof Bool Int Nat Num Rat Sym
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