Lists
CS135 Lecture 05

L05.0 List values and expressions

This is an empty list

Since it's empty, we don’t know what
kind of list it is. It might be a grocery list.
It might be a list of things to do.

t

lis

ing no

t the same as havi

IS NO

t

IS

ty |

Having an emp

This is an empty list in Racket "\

= Since it's empty, we don’t know what
Uniteaze (wome..)v S O B B Stop Il kind of list it is. It might be list of Int. It
empty might be a list of Sym.

Welc_:ome to DrRacket, .

-— A P

All expressions are covered Show next time? @
Beginning St...v 15 451.38MB[| ¢

Having an empty list is not the same as having no list "\

(O] @® Untitled 2 - DrRacket O] ® Untitled 2 - DrRacket

Untiled 2v (define..)v HE O Pl > Stop [l Untiled 2v (define .)v HE O Pl > Stop [l
empty

Welc_:ome to DrRacket, . Welc_:ome to DrRacket, :

-— A P -— A P

All expressions are covered Show next time? @ All expressions are covered Show next time? @
Beginning St...v 1:5 451.38MB[| ¢ Beginning St...v 1:0 44875 MB[| ¢

Let's add an item to our list

Looks like a grocery list.

Let’'s add an item to our Racket list with cons "\

Looks like a list of Sym.

[NON) Untitled 2 - DrRacket
Untitled 2v (define .)v (&) Check Syntax ¢ Step [»| Run[> Stop [l

(cons 'bread empty) cons constructs a list by
adding an item to the front of
another list, e.g. empty.

cons can be confusing
because it can be viewed as
a function or a way of
representing the resulting
value.

>
All expressions are covered Show next time? €
Beginning Student custom v 4:2 373.47 MB D %

Let's add another item to our list

o ® Untitled 2 - DrRacket
Untitled 2v (define ..)v =p(E]) Check Syntax O« Step[»| Run[> Stop [l
(cons 'apple .
' B Pread
(cons 'bread empty)) Bt
>
All expressions are covered Show next time? @

Beginning Student custom v 4:2 403.50 MB D ﬁ

Let's add a third item

O] @ Untitled 2 - DrRacket
Untitled 2v ~ (define ..)v up({E) Check Syntax O« Step[»] Run[> Stop [l

(cons 'milk
(cons 'apple
(cons 'bread empty)))

>

All expressions are covered Show next time? @
Beginning Student custom v 4:2 439.10 MB D Q

We have milk in the fridge. Let’s erase it.

[NON] Untitled 2 - DrRacket
Untitled 2v ~ (define ..)v up({E) Check Syntax O« Step[»] Run[> Stop [l

(rest (cons 'milk
(cons 'apple
(cons 'bread empty))))

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 2
512 MB.

(cons 'apple (cons 'bread empty))

>
All expressions are covered Show next time? €
Beginning Student custom v 4:2 49498 MB[| %

11

The rest function

[NON] Untitled 2 - DrRacket
Untitled 2v ~ (define ..)v up({E) Check Syntax O« Step[»] Run[> Stop [l

(rest (cons 'milk
(cons 'apple
(cons 'bread empty))))

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 2
512 MB.

(cons 'apple (cons 'bread empty))

>
All expressions are covered Show next time? €
Beginning Student custom v 4:2 49498 MB[| %

A

rest is a racket function that
consumes a list and
produces that list with the
first item removed.

It is an error to apply rest to
the empty list.

12

The £irst function

[NON] Untitled 2 - DrRacket
Untitled 2v (define ..)v up({E) Check Syntax ©«f Step[»] Run[> Stop [l

(first (cons 'milk
(cons 'apple
(cons 'bread empty))))

Welcome to DrRacket, version 7.0 [3m].

Language: Beginning Student [custom]; memory limit: 2
512 MB.

'milk

>
All expressions are covered Show next time? €&
Beginning Student custom v 4:2 538.48 MB| | ¢

A

first is a racket function
that consumes a list and
produces the first item of that
list.

It is an error to apply £irst
to the empty list.

13

Add some eggs

O] @ Untitled 2 - DrRacket
Untitled 2v (define ..)v up({E) Check Syntax O« Step[»] Run[> Stop [l

(cons 'eggs
(rest (cons 'milk
(cons 'apple
(cons 'bread empty)))))

Language: Beginning Student [custom]; memory limit: 2
512 MB.

(cons 'eggs (cons 'apple (cons 'bread 2
empty)))

> |
All expressions are covered Show next time? €

Beginning Student custom v 4:2 337.46 MB D Q

Another apple

O] @ Untitled 2 - DrRacket
Untitled 2v (define ..)v up({E) Check Syntax O« Step[»] Run[> Stop [l

(cons 'apple
(cons 'eggs
(rest
(cons 'milk
(cons 'apple
(cons 'bread empty))))))

Language: Beginning Student [custom]; memory limit: 2
512 MB.

(cons 'apple (cons 'eggs (cons 'apple ,
(Cfns 'bread empty))))

>

All expressions are covered Show next time? @
Beginning Student custom v 4:2 417.80 MB D %

Lists are values

® ® Untitled 2 - DrRacket
Untitled 2v (define ..)v wp(E] Check Syntax ¢ Step [»| Run[> Stop [l

(cons 'apple
(cons 'eggs
(rest
(cons 'milk
(cons 'apple
(cons 'bread empty))))))

Welcome to DrRacket, version 7.0 [3m].
Language: Beginning Student [custom]; memory limit: 512 MB.

(cons 'apple (cons 'eggs (cons 'apple (cons 'bread empty))))
>

All expressions are covered Show next time? @
Beginning Student custom v 4:2 492.55 MB D @

Lists are the central data structure we use in CS135.

A

The definitions pane on
the top contains an
expression (because of
rest).

The interactions pane on
the bottom contains a
value.

16

Testing for the empty list with empty?

® ® Untitled 2 - DrRacket
Untitled 2v (define ..)v w5 Check Syntax ¢ Step [»| Run[> Stop [l

(empty? (cons 'apple (cons 'bread empty)))
(empty? (rest (cons 'milk empty)))

(empty? empty)

(empty? 123)

false
true
true
false
> |

All expressions are covered Show next time? @
Beginning Student custom v 7:2 485.98 MB D @

empty? consumes any value and produces true only if it is the empty list

17

List of Racket list operations "\

cons Constructs a list from a value and a list by adding the value to the front.
first Consumes a non-empty list and produces the first value in that list.

rest Consumes a non-empty list and produces a list with the first value removed.
empty? Consumes Any and produces true only if the value is empty.

list? Consumes Any and produces true only if the value is a list.

cons? Consumes Any and produces true only if the value is a non-empty list.

We use Any in contracts to mean a value of any type.

18

L05.1 Composite data

Composite data

number or symbol, i.e., composite data types

A

Now that we have lists, we can create data types that are more than just a single

For example, we could use a list of two Num to represent a point in the Cartesian

coordinate system: (x, y).

We represent the point (-3, 1) as:
(cons -3 (cons 1 empty))

More generally, we represent the point (x, y) as:
(cons x (cons y empty))

-

(=1.5,-2.5) +

20

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system

Distance from the origin "\

We want to write a function the computes the distance from a point (x, y) to the
origin (0, 0).

This is the first draft of our purpose.

From our math classes we know that the distance from (x, y) to (0, 0) is /22 + 2.

In thinking of examples, we want some with x positive, some with x negative,
some y positive, etc., as well as some with x and/or y zero.

(3,—1) = V32 + —12 ~ 3.1622 (6,0) = V62 + 0% =6
(—3,4) = V—32+42 =5 (0,0) = V02 +02 =0

21

Header "\

Let’s give a name to our function.

One possibility is distance-to-origin, which is accurate but long, with lots of
typing. Too long can be confusing in a larger context with lots of functions.

On the other hand, d0, is short but too cryptic. Let’s err on the side of long.

(define (distance-to-origin point)...)

22

Contract "\

Our function consumes a point and produces a Num.

A point (x, y) is represented as a list with two elements giving the contract:

;; distance-to-origin: (cons Num (cons Num empty)) -> Num

We can now finalize our purpose as:

;+ Calculate the distance from a point to the origin.

23

Body "\

At this point, we understand our problem fairly well, and we have a good idea how
the data will be represented in Racket.

For this simple example, it's straightforward to translate the math directly into
Racket.

(define (distance-to-origin point)
(sgrt (+
(sgr (first point)) ; get x from the point
(sgr (first (rest point))) ; get y from the point
)))

We've added some comments since accessing x and y seems confusing.

24

Putting it all together

;; Calculate the distance from a point to the origin.
;; distance-to-origin: (cons Num (cons Num empty)) -> Num
(define (distance-to-origin point)
(sgrt (+
(sqr (first point)) ; get x from the point
(sgqr (first (rest point))) ; get y from the point
)))
(check-expect (distance-to-origin (cons -3 (cons 4 empty))) 5)
(check-within
(distance-to-origin (cons 3 (cons -1 empty))) 3.1622 0.001)
(check-expect (distance-to-origin (cons 6 (cons 0 empty))) 6)
(check-expect (distance-to-origin (cons 0 (cons 0 empty))) O0)

25

L05.2 Data definitions

Data types "\

We use various types in our contracts to help document the behaviour of our
functions.

These types include Sym, Nat, Rat, etc.

The contract for distance-to-origin may be hard to understand because the
data type it consumes is composite.

; ; distance-to-origin: (cons Num (cons Num empty)) -> Num

27

Data definitions "\

We can use a data definition to give a name to a composite data type.

;; a Point is a (x,y) point in the Cartesian coordinate system
;; a Point is a (cons Num (cons Num empty))

With this data definition, we can simplify our contract for distance-to-origin.

;+ Calculate the distance from a point to the origin.
;; distance-to-origin: Point -> Num

28

Using helper functions "\

To make things more understandable, we can write “helper functions” to create a Point
(called a “constructor”) and to access its components (called “accessor functions”).

a Point is a (x,y) point in the Cartesian coordinate system
a Point is a (cons Num (cons Num empty)

mk-point consumes an x and y coordinate and produces a Point
mk-point: Num Num -> Point

(define (mk-point x y) (cons x (cons y empty)))
;; get the x coordinate from a Point

;; get-y: Point -> Num

(define (get-x point) (first point))

;; get the x coordinate from a Point
;; get-y: Point -> Num
(define (get-y point) (first (rest point)))

29

Using helper functions

A

;+ Calculate the distance from a point to the origin.

;; distance-to-origin:
(define (distance-to-origin point)
(sgrt (+ (sqr (get-x point))

(check-expect
(check-within
(check-expect
(check-expect

(distance-to-origin
(distance-to-origin
(distance-to-origin
(distance-to-origin

Point -> Num

(mk-point 3
(mk-point 3
(mk-point 6
(mk-point O

(sqr (get-y point)))))

4)) 5)
-1)) 3.1622 0.001)
0)) 6)
0)) 0)

30

A note on structures "\

DrRacket supports a feature called “structures”, which are composite data types
similar to the lists in the previous slides. You may see structures mentioned in
DrRacket documentation and in previous iterations of CS135.

On the one hand, structures do all the work of creating helper functions. Defining a
structure automatically creates functions to assess its components.

On the other hand, lists are much more powerful than structures. Anything you can
do with a structure, you can do with a list of fixed size.

In CS135, we have only one composite data type, the list. Aimost. As you will see
next lecture, data definitions for lists can be recursive, allowing us to work with
composite data of arbitrary size.

31

Data definitions "\

We can also create data definitions to give names to sets of symbols a function
might produce or consume.

;; an Outerwear is (anyof 'Jjacket 'sweater 'shirt)

;; what-to-wear: Num -> Outerwear
(define (what-to-wear temperature)
(cond [(< temperature 8) 'jacket]
[(< temperature 16) 'sweater]
[else 'shirt]))

32

L05.3

>

<>

<<

<>

>

>

<o

<t

33

A playing card as a composite data type

The elements of a playing
card are called suits and
ranks:

Suits are the categories:
& Spades, ¥ Hearts,

¢ Diamonds, # Clubs.
Ranks are the values: A
(Ace), 2-10, J (Jack), Q
(Queen), K (King).

We will ignore the jokers
for now.

A

34

Representing suits and ranks "\

We can represent suits with symbols:

;; A Suit is (anyof 'spade 'heart 'diamond 'club)
We can represent ranks with a combination of numbers and symbols:
;; A Rank is (anyof 2 3 4 5 6 7 8 9 10 'jack 'queen 'king 'ace)

A playing card (Card) combines a Suit and a Rank in a list with two elements:

(cons 'heart (cons 6 empty))
(cons 'club (cons 'king empty))
(cons 'diamond (cons 'ace empty))

35

A data definition for playing cards "\

;; A Card is a playing card with a Suit and a Rank
;; A Card is a (cons Suit (cons Rank empty))
(define (mk-card suit rank) (cons suit (cons rank empty)))

;; Get the Suit of a Card
;; get-suit: Card -> Suit
(define (get-suit card) (first card))

;; Get the Rank of a Card
;; get-rank: Card -> Rank
(define (get-rank card) (first (rest Card)))

36

A predicate to determine if a card is a “face card” "\

A “face card” is a Jack, Queen, or King of any suit.

;; Determine if a Card is a face card
;; face-card?: Card -> Bool
(define (face-card? card)
(or ...
We need to test if two ranks are the same.
A rank can be either a symbol or a number.

(check-expect (face-card? (mk-card 'heart 6)) false)

(check-expect (face-card? (mk-card 'club 'king)) true)
(check-expect (face-card? (mk-card 'diamond 'ace)) false)

37

Are two ranks the same? "\

;; A Rank is (anyof 2 3 4 5 6 7 8 9 10 'jack 'queen 'king 'ace)

;; Are two ranks the same?
;; rank=7?: Rank Rank -> Bool
(define (rank=? rankO rankl)

(or (and (symbol? rank0O) (symbol? rankl) (symbol=? rankO rankl))
(and (number? rankO) (number? rankl) (= rankO rankl))))

(check-expect (rank=? 'ace 'ace) true)
(check-expect (rank=? 2 2) true)

(check-expect (rank=? 'king 10) false)

The contract guarantees that each argument will be a Rank (and not -1.5 or 'blue)

38

A predicate to determine if a card is a “face card”

Now we can use rank=? to test the rank of the card:

;; predicate to determine if a Card is a face card

;; face-card?: Card -> Bool
(define (face-card? card)
(or (rank=? (get-rank card) 'jack)
(rank=? (get-rank card) 'queen)
(rank=? (get-rank card) 'king)))

(check-expect (face-card? (mk-card 'heart 6)) false)
(check-expect (face-card? (mk-card 'club 'king)) true)
(check-expect (face-card? (mk-card 'diamond 'ace)) false)

Lecture 05 Summary

LO5: You should know "\

e How to create and manipulate lists with cons, first, rest, empty, empty?,
list?, and cons?

e How to write data definitions and helper functions for composite data types
using lists.

e How to apply the design recipe to create functions that work with composite
data types using lists.

41

LO5: Allowed constructs "\

Newly allowed constructs:
Any cons cons? empty empty? first list? rest

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos and asin atan boolean? check-expect check-within
cond cos define e else exp expt false inexact? integer? log
max min not number? or pi quotient rational? remainder sin
sgr sqgrt subl symbol? symbol=? tan true zero?

anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules for Recursion (first version)

42

