Recursion on lists
CS135 Lecture 06

L06.0 Buying apples

A grocery list

(cons 'apple
(cons 'eggs
(cons 'bread
(cons 'apple
(cons 'milk
(cons 'bread empty))))))

How many apples should we buy? How many apples does the list contain?

Data definition "\

To make the problem clearer, let’s write a data definition for a grocery list:
;; a Food is (anyof 'apple 'bread 'eggs 'milk)

;7 @ (listof Food) is one of:

;; % empty

;; * (cons Food (listof Food))

Our grocery list has a recursive data definition.

A list of food is either an empty list or a food item followed by a list of food.

Contract and header "\

We can now write a contract and header for a function that will count the number
of apples we have to buy.

;; count-apples: (listof Food) -> Nat
(define (count-apples groceries) ...)

Notice that we aren’t going to buy half-eaten apples and we aren’t going to return
apples to the store, so the function produces a Nat.

Body "\

The data definition gives us a hint about how to write the body of the function.

There are two cases:

1. The listis empty. We don’t need to buy any apples.
2. The listis not empty. There are two possibilities for the first item.
a. It's an apple. In which case we have to buy one apple, plus the number of apples

on the rest of the list.
b. It's not apple. In which case we have to buy the number of apples on the rest of

the list.

Body

Translating the English to Racket:

;; Count the number of apples in a grocery list.

;; count-apples: (listof Food) -> Nat
(define (count-apples groceries)
(cond [(empty? groceries) 0]
[(symbol=? 'apple (first groceries))
(addl (count-apples (rest groceries)))]
[else (count-apples (rest groceries))]))

Tests

(check-expect (count-apples empty) O0)

(define testO
(cons 'apple
(cons 'eggs
(cons 'bread
(cons 'apple

(cons 'milk

(cons

(check-expect (count-apples test0) 2)

What else?

'bread empty)))))))

L06.1 Rules for recursion

Generalized list data definition "‘

We can generalize lists of Food to other types by using an X:

;7 A (listof X) is one of:

;; %X empty

;; % (cons X (listof X))

Replace X with a specific type such as Food, Int, or Point.

If X can be anything (the function does not care what the list contains) we use Any.

10

Template "\

The structure of a function manipulating a (1istof X) directly follows from the
data definition. We first handle the empty case, and then we can handle cases
where the list is not empty.

(define (listof-X-template 1lox)
(cond [(empty? lox) ...]
[... ...]
[else (... (first lox)
(listof-X-template (rest 1lox)))1))

You can use this template as a starting point to write the body of a function
processing a list.

1

Thinking about a list function "\

Here are four crucial questions to help think about functions consuming a list:

What should the function produce in the base case?

What should the function do to the first element in a non-empty list?

What should applying the function to the rest of the list produce?

How should the function combine #2 and #3 to produce the answer for the
entire list?

e\

When working with lists you should always recur on the rest of the list and check
termination with empty?

12

Rules for recursion (second version) "\

1. Change one argument closer to termination while recurring. No other

arguments can change.
2. When recurring on a natural number use (subl n) and test termination with

zero?
3. When recurring on a list use (rest 1lst) and test termination with empty?

In this version, the argument in #1 is always the same argument.

Here, and elsewhere in the course, we use “1st” as the name of a generic list
because “1list” has special meaning in DrRacket, which we will discuss in a few
lectures. We also sometimes use “lon” to mean list of Nat/Num and “los” to
mean list of Sym, which provide extra clarity and readability.

13

Generalizing count-apples "\

The Rules for Recursion allow functions to have arguments that don’t change. For
example, we can write a function to count how often a target symbol occurs in a
list.

;; Count the number of times a target symbol
;; occurs in a list of symbols.

;; count-symbol: Sym (listof Sym) -> Nat
(define (count-symbol target 1st) ...)

14

Thinking about a recursive list function "\

1. What should the function produce in the base case?

The list is empty. The symbol does not appear in the list. Produce zero.

2. What should the function do to the first element in a non-empty list?
If it’s the target symbol, count it (+1). If not, ignore it (+0).

3. What should applying the function to the rest of the list produce?
The number of times the target appears in the rest of the list.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

Add the counts in #2 and #3.

15

Filling in the template A\

;; Count the number of times a target symbol
;; occurs in a list of symbols.

;; count-symbol: Sym (listof Sym) -> Nat
(define (count-symbol target 1st)

(cond [(empty? 1st) ...]
[(symbol=? target (first 1st)) ...]
[else (... (count-symbol target (rest 1lst)))]))

Start by getting our three cases (two in #2 and one in #3) into the template. The

template can only be modified in ways that are consistent with the Rules for
Recursion.

The first case to consider is always the empty list.

16

Filling in the template A\

;; Count the number of times a target symbol
;; occurs in a list of symbols.
;; count-symbol: Sym (listof Sym) -> Nat
(define (count-symbol target 1st)
(cond [(empty? 1st) O]
[(symbol=? target (first 1lst))
(addl (count-symbol target (rest 1st)))]
[else (count-symbol target (rest 1st))]))

Add the values produced by each case. It's okay to recurse twice in two different

answers as long as the recursion follows the Rules. We almost never recurse in
the question side of a question/answer pair.

17

Test cases

(check-expect (count-symbol
(define testO
(cons 'apple
(cons 'eggs
(cons 'bread

'apple empty) O0)

(cons 'apple
(cons 'milk

(check-expect (count-symbol
(check-expect (count-symbol

What else?

(cons 'bread empty)))))))
'apple test0) 2)
'fish test0) 0)

18

L06.2 Length of a list

Purpose, contract and header "\

;; Compute the length of a list
;; len: (listof Any) -> Nat
(define (len 1lst) ...)

The function works with any list, so it consumes a (1listof Any).
DrRacket has a built-in function called 1ength, which does exactly this, so we

can’t use that name. After this lecture, you can use the built-in function (unless, for
some reason, we say you can’t on an assignment or exam).

20

Thinking about a list function "\

1. What should the function produce in the base case?

The list is empty. The length is zero.

2. What should the function do to the first element in a non-empty list?

Count it. +1

3. What should applying the function to the rest of the list produce?
The length of the rest of the list.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

Add them together.

21

Filling in the template and adding

;; Computer the length of a list
;; len: (listof Any) -> Nat
(define (len 1lst)

(cond [(empty? 1st) O]

test cases "‘

[else (addl (len (rest 1lst)))]))

(check-expect (len empty) O0)
(check-expect (len (cons 'a (cons
(check-expect (len (cons 1 (cons

'b empty))) 2)
'a (cons true empty)))) 3)

22

List idioms "\

There are an unlimited number of ways that we might wish to process the
information in a list. However, after working with lists in a lot of practical contexts,
we start to see some common themes emerge: standard styles of processing that
come up again and again. We'll refer to these as list processing idioms.

In this lecture and the next, we'll continue to practice writing list functions, with an
emphasis on exploring the three most important list idioms: folding a list,
mapping a list, and filtering a list.

So far, we have been folding a list.

23

List idiom - Folding a list A\

Folding a list (sometimes also called "reducing a list") is any process where we
consume a list and boil all of its contents down to a single value, which often
summarizes, combines, or otherwise accumulates the information of all of the
individual list elements. Both count-symbol and len are examples of folding.

When we fold a list, we start with a "base" value, a foundation upon which the
folding occurs, and which will serve as the result of folding the empty list. We also
choose a process for "combining" each element of the list with the base, one at a
time. Those successive combinations produce ever more complete answers to
sub-problems on parts of the list, so that by the time we're done we have the
answer for the whole list.

24

L06.3 Predicates over lists

Does a list of numbers contain any non-positive values? "‘

;; Does a list of numbers contain only positive values?
;; all-positive?: (listof Num) -> Bool
(define (all-positive? 1list)...)

(check-expect

(all-positive? (cons 1 (cons 2 (cons 3 empty)))) true)
(check-expect

(all-positive? (cons 1 (cons -2 (cons 3 empty)))) false)
(check-expect (all-positive? empty) true)

26

Thinking about a list function "\

1. What should the function produce in the base case?

The list is empty. It does not contain any non-positive numbers. Produce true.
2. What should the function do to the first element in a non-empty list?
Is it non-positive? If so, we can “short circuit” and produce false.

3. What should applying the function to the rest of the list produce?
Produce true if the rest of the list is entirely positive; produce false otherwise

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

The “short circuit” in #2 avoids the need to combine results.

27

Filling in the template A\

;; Does a list of numbers contain only positive values?
;; all-positive?: (listof Num) -> Bool
(define (all-positive? 1list)
(cond [(empty? list) true]
[(<= (first list) 0) false]
[else (all-positive? (rest 1list))]))
(check-expect
(all-positive? (cons 1 (cons 2 (cons 3 empty)))) true)
(check-expect
(all-positive? (cons 1 (cons -2 (cons 3 empty)))) false)
(check-expect (all-positive? empty) true)

28

No, you can't use the member? built-in list predicate "\

Yes, it's in the documentation. No, you can’t use it. No need to ask.

If you think you need it to solve a homework problem, you need to think about how
you can approach the problem differently. Please ask us for help.

member? is one of many built-in functions that test equality with equal®?

In CS135 we want you to understand the types of the data you are working with
and equal? works with anything (e.g., arbitrarily nested lists of lists) doing deep
structural comparisons. At this point it's too magical, and as we start to work with
more-and-more complex lists structures it can even lead you far astray.

29

https://docs.racket-lang.org/htdp-langs/beginner.html#%28def._htdp-beginner._%28%28lib._lang%2Fhtdp-beginner..rkt%29._member~3f%29%29

Writing your own membership predicate "\

Here are some problems you can try solving to test your understanding of the
material so far.

1. Write a function contains-symbol? that consumes a target symbol and list
of symbols and produces true if the target is contained in the list.

2. Write a function contains? that works for a list of symbols and numbers.
How do you test for equality if (Eirst 1lst)could be a symbol or a number?

Now, when you want to use member? in an assignment, you can just paste in your
version of contains? As we add more data types you may want to keep it
updated.

If you are reading this sentence while studying for an exam, and you haven'’t tried
these problems, we suggest you try them. If you can’t solve them, ask for help.

30

Using DrRacket documentation "\

DrRacket document is available at https://docs.racket-lang.org/htdp-langs/

We are currently working at the “Beginning Student” level, but we will eventually
reach the “Intermediate Student with Lambda” level. As we introduce
more-and-more language constructs, the documentation may help to remind you
about how to use these constructs.

You can also ask Google, ChatGPT, etc, for help but they don’t understand the
limitations we place on you in CS135 (e.g., they may suggest member?).

If the documentation says that a function uses equal? there’'s no need to ask if
you can use the function. You can't. It's possible that we will accept some of the
other functions, but more likely we will ask you to stick to the allowed constructs.

31

https://docs.racket-lang.org/htdp-langs/
https://docs.racket-lang.org/htdp-langs/beginner.html
https://docs.racket-lang.org/htdp-langs/intermediate-lam.html

Lecture 6 Summary

L06: You should know "\

e How to write recursive functions that fold lists using the design recipe,
templates, and the Rules for Recursion (second version).

e How to write predicates over lists using the design recipe, templates, and the
Rules for Recursion (second version).

e No, you can’'t use member? or equal-?

33

LO6: Allowed constructs "\

Newly allowed constructs:
addl length listof
Rules for Recursion (second version)

Previously allowed constructs:

() [1 +-%*/=<><=5>=;

abs acos and asin atan boolean? check-expect check-within
cond cons cons? cos define e else empty empty? exp expt
false first inexact? integer? list? log max min not number?
or pi quotient rational? remainder rest sin sqr sqrt subl
symbol? symbol=? tan true zero? Any anyof Bool Int Nat Num
Rat Sym

Recursion must follow the Rules for Recursion (second version)

34

