Producing lists
CS135 Lecture 07

LO7.0 Eating apples

We bought some groceries "\

(cons 'apple
(cons 'eggs
(cons 'bread
(cons 'apple
(cons 'milk
(cons 'bread empty))))))

Let’s eat the apples, i.e., we want to produce an equivalent list with the symbol
'apple removed.

We call this a filter. We are filtering the list to remove apples.

Purpose, contract, and header "\

;; Filter a list of symbols to remove the symbol
;; eat-apples: (listof Sym) -> (listof Sym)
(define (eat-apples 1lst) ...)

'apple

Test cases "\

(check-expect (eat-apples empty) empty)

(define testO
(cons 'apple
(cons 'eggs
(cons 'bread
(cons 'apple
(cons 'milk
(cons 'bread empty)))))))

(define resultO
(cons 'eggs (cons 'bread (cons 'milk (cons 'bread empty)))))

(check-expect (eat-apples test0) resultO)

Remove all apples from a list "\

1. What should the function produce in the base case?

The list is empty. It does not contain any apples. Produce the empty list.

2. What should the function do to the first element in a non-empty list?
If it’s an apple, ignore it. It it’s not an apple, we need retain it in the filtered list.
3. What should applying the function to the rest of the list produce?
The rest of the list filtered to remove the apples.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

If we are retaining the symbol in #2, we cons it to the filtered list from #3.

Filling in the template A\

(define (eat-apples 1lst)
(cond [(empty? 1lst) empty]
[(symbol=? 'apple (first 1lst))
(eat-apples (rest 1lst))]
[else (cons (first 1lst) (eat-apples (rest 1lst)))]))

Generalizing eat-apples to eat anything

;; Filter a list of symbols to remove a target symbol
;; eat-symbol: Sym (listof Sym) -> (listof Sym)
(define (eat-symbol target 1st)
(cond [(empty? 1lst) empty]
[(symbol=? target (first 1st))

(eat-symbol target (rest 1lst))]
[else

(cons (first 1lst)
(eat-symbol target (rest 1lst)))]))

List idiom - Filtering a list A\

Filtering is another common list idiom, which is easier to describe than folding. We
start with a list, together with a property we'd like to test for every element of that
list. Our goal is to produce a sublist of the original list, consisting of just those
elements that have the property.

For example, if we're filtering for positive numbers, then filtering the list
(cons 4 (cons -3 (cons -8 (cons 1 empty))))

would produce
(cons 4 (cons 1 empty))

If we were instead asking for even numbers, we'd end up with
(cons 4 (cons -8 empty))

Keeping even numbers in a list of numbers "‘

(define (keep-even 1st)
(cond [(empty? 1lst) empty]
[(odd? (first 1lst))
(keep-even (rest 1st))]
[else (cons (first 1lst) (keep-even (rest 1st)))]))

(check-expect
(keep-even (cons 4 (cons -3 (cons -8 (cons 1 empty)))))

(cons 4 (cons -8 empty)))

Note: odd? is a built-in predicate; there is also a built-in even?

10

LO7.1 Apples to oranges

Transforming a list "\

We decide that we want to buy oranges instead of apples. We want to transform
our grocery list to replace all apples with oranges.

(cons 'apple (cons 'eggs (cons 'bread (cons 'apple
(cons 'milk (cons 'bread empty))))))

l

(cons 'orange (cons 'eggs (cons 'bread (cons 'orange
(cons 'milk (cons 'bread empty))))))

12

Replacing all apples with oranges "\

1. What should the function produce in the base case?

The list is empty. It does not contain any apples. Produce the empty list.

2. What should the function do to the first element in a non-empty list?
If it’s an apple, replace it with an orange. Otherwise, retain it in the filtered list.
3. What should applying the function to the rest of the list produce?
The rest of the list filtered to replace the apples with oranges.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

cons the symbol from #2 onto the filtered list from #3.

13

Apples to oranges

;; Transform a list of symbols by replacing
;; all occurrences of 'apple with 'orange
;; apples-to-oranges: (listof Sym) -> (listof Sym)
(define (apples-to-oranges 1st)
(cond [(empty? 1lst) empty]
[(symbol=? 'apple (first 1st))
(cons 'orange
(apples-to-oranges (rest 1lst)))]
[else
(cons (first 1lst)
(apples-to-oranges (rest 1st)))1]))

14

List idiom - Mapping a list "\

Transforming a list in this way is also called “mapping a list”.

We have a list and some sort of transformation operation, and we want to produce
a new list of the same length, where each value from the original list has had the

transformation applied to it.

For example, if we want to map the built-in sqr function over the list
(cons 2 (cons 4 (cons 5 empty)))

we would expect to get back
(cons 4 (cons 16 (cons 25 empty)))

15

Mapping lists of numbers

We can map lists of numbers to lists of numbers by applying mathematical
operations to each element of the list and producing the result.

For example, we could add one to each element of a list.

(cons 10 (cons -6 (cons 999 empty)))

l

(cons 11 (cons -5 (cons 1000 empty)))

A

16

Add one to each element of a list of numbers "\

1. What should the function produce in the base case?

The list is empty. There is nothing to transform. Produce the empty list.

2. What should the function do to the first element in a non-empty list?
Add one to the first element of the list.

3. What should applying the function to the rest of the list produce?
Call the function recursively to add one to the elements in the rest of the list.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

cons the value from #2 onto the transformed list from #3.

17

Add one to each element of a list of numbers

;; Add one to each element of a list
;; addl-l1list: (listof Num) -> (listof Num)
(define (addl-list 1lst)
(cond [(empty? 1lst) empty]
[else (cons (addl (first 1lst))
(addl-1list (rest 1lst)))]))

(check-expect (addl-list empty) empty)
(check-expect

(addl-1ist (cons 10 (cons -6 (cons 999 empty))))
(cons 11 (cons -5 (cons 1000 empty))))

18

LO7.2 Ordered lists

Ordered lists "\

Lists are more than just a collection, or set, of elements. The elements can have
properties relative to one another. For example, a list can be ordered.

Increasing or “ascending” order:
(cons 10 (cons 20 (cons 30 empty)))

Decreasing or “descending” order:
(cons 64 (cons 53 (cons 42 (cons 42 (cons 20 empty)))))

We say “strictly increasing” or “strictly decreasing” if elements can’t be equal.

20

Predicate to check if a list is in ascending order "\

1. What should the function produce in the base case?

The list is empty. The list is ordered. Produce true.

2. What should the function do to the first element in a non-empty list?
29?7

3. What should applying the function to the rest of the list produce?
true, if the rest of the list in ascending order; false, otherwise.

4. How should the function combine #2 and #3 to produce the answer for
the entire list?

and the values from #2 and #3 (could “short circuit’).

21

Predicate to check if a list is in ascending order "\

For this problem, we have two base cases:

1. If the list is empty, the list is ordered.
2. If the rest of the list is empty, the list is ordered.

If neither of these conditions is true, then we can compare the first element of the
list, with the second element of the list. We know that the second element exists

because the rest of the list is not empty.

22

Predicate to check if a list is in ascending order

;; Check that a list of numbers is in ascending order
;; ascending?: (listof Num) -> Bool
(define (ascending? 1lst)

(cond [(or (empty? 1lst) (empty? (rest 1lst))) true]

[(> (first 1lst) (first (rest 1lst))) false]
[else (ascending? (rest 1lst))]))

Notice that the base cases are combined and that we “short circuit” if the first
element is greater than the second element.

Change > to >= if we want the list to be in strictly increasing order.

A

23

Test cases "\

(check-expect (ascending? empty) true)
(check-expect (ascending? (cons -10 empty)) true)

(check-expect
(ascending? (cons 10 (cons 20 (cons 30 empty)))) true)

(check-expect

(ascending?

(cons 64 (cons 53 (cons 42 (cons 31 (cons 20 empty))))))
false)

(check-expect (ascending? (cons 1 (cons 1 empty))) true)

24

Inserting into an ordered list "\

Normally we add an element to a list with cons, but suppose we want to insert an
element into a list while maintaining some property, such as ascending order.

What happens if we insert into an empty list?
What happens if the element is less than the first of the list?
What happens if the element is greater than the first of the list?

(any other cases?)

25

Inserting into an ordered list

;; Insert a number into an ordered list
;; insert: Num (listof Num) -> (listof Num)
;; Requires: values must be in ascending order

(define (insert n 1lst)
(cond [(empty? 1st) (cons n empty)]
[(K n (first 1st)) (cons n 1lst)]
[else (cons (first 1lst) (insert n (rest 1lst)))]))

How do we test this function?

The “requires” indicates the special limitations of this function.

26

Test cases "\

(check-expect (insert -1 empty) (cons -1 empty))
(check-expect
(insert 3 (cons 1 (cons 2 (cons 4 (cons 5 empty)))))
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 empty))))))
(check-expect
(insert 0 (cons 1 (cons 2 (cons 3 (cons 4 empty)))))
(cons 0 (cons 1 (cons 2 (cons 3 (cons 4 empty))))))
(check-expect
(insert 5 (cons 1 (cons 2 (cons 3 (cons 4 empty)))))
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 empty))))))

27

LO7.3 Lastly

first, second, third, fourth, ... "\

first Consumes a list with length = 1. Produces the first value in that list.
second Consumes a list with length = 2. Produces the second value in that list.
third Consumes a list with length = 3. Produces the third value in that list.
fourth Consumes a list with length = 4. Produces the fourth value in that list.
...and so on to eighth, but you probably will never need more than third.

In the list of allowed constructs, we limit you to £irst, second, and third. If you
want to use fourth or higher, you might want to think again about your approach.
It's probably not the simplest way to solve the problem.

29

How do we find the last element in a non-empty list? "\

1. What should the function produce in the base case?

If the rest of the list is empty, produce the first (and therefore the last) element in the list.
2. What should the function do to the first element in a non-empty list?

By #1, the rest of the list is not empty, so we can ignore the first element.

3. What should applying the function to the rest of the list produce?

The last element in the rest of the list.

4. How should the function combine #2 and #3 to produce the answer for the entire
list?

Since we ignore the first of the list in #2, we just produce the element from #3.

30

Finding the last element in a non-empty list. "\

;; Produce the last element of a non-empty list
;; last: (listof Any) -> (listof Any)
;; Requires: list should be non-empty
(define (last 1lst)
(cond [(empty? (rest 1st)) (first 1lst)]
[else (last (rest 1lst))]))

It's essential for the purpose to indicate that the list must be non-empty.
It makes no sense for 1ast to work on an empty list. It's okay under the Rules for

Recursion for the base case to be (empty? (rest 1lst)). You should add a
“requires” under a contract to indicate special limitations of a function.

31

Lecture 07 Summary

LO7: You should know

How to filter lists.

How to transform elements of a list with the map idiom.

How to check that a list has a defined ordering property, e.g. ascending
How to insert into an ordered list

How to use the built-in functions second, and third.

How to find the last element of a list.

A

33

LO7: Allowed constructs "\

Newly allowed constructs:
even? odd? second third

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos addl and asin atan boolean? check-expect
check-within cond cons cons? cos define e else empty empty?
exp expt false first inexact? integer? length list? log max
min not number? odd? or pi quotient rational? remainder rest
sin sqr sqrt subl symbol? symbol=? tan true zero?

listof Any anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules for Recursion (second version)

34

