Big-O notation

CS135 Lecture 08

LO8.0 Leveling up

List abbreviations

The expression

(cons v, (cons V, (... (cons V_empty)...)))
can be abbreviated as

(listv, v, ... V)

For example

(cons 4 (cons 3 (cons 2 (cons 1 empty)
can be abbreviated as

(list 4 3 2 1)

To use list abbreviations we have to adjust our language level.

' The Racket Language (3R)

Start your program with #1ang to specify

the desired dialect. For example:

#lang racket [docs]
#lang racket/base [docs]
#lang typed/racket [docs]
#lang scribble/base [docs]
... and many more
‘e Teaching Languages (5¢T)
How to Design Programs

Beginning Student
Beginning Student with List Abbreviations

eginning Student with
Intermediate Student
Intermediate Student with 1ambda
Advanced Student

DeinProgramm
Schreibe Dein Programm! - Anfanger
Schreibe Dein Programm!

Schreibe Dein Programm! - fortgeschritten

D Die Macht der Abstraktion

" Other Languages (3£0)

Hide Details Revert to Language Defaults

Adjusting the language level

" Enable tracing
‘e Constructor
Output Style ' Quasiquote
) write
" #true #false '()
ConstantSnyle sy true false empty

Fraction Style : ' Mixed fractions

Teachpacks

<< none >>

' Repeating decimals

A

“Beginning student with List
Abbreviations”

You must have exactly this
setting for the count of the
steps to be the same as in
the examples that follow.

LO8.1 Measuring efficiency

To measure efficiency, we count substitution steps "‘

(define (len 1lst)
(cond [(empty? 1st) O]
[else (addl (len (rest 1lst)))]))

(len empty) = 4 steps

(len (list 1)) = 10 steps

(len (list 1 2)) = 16 steps
(len (list 1 2 3)) = 22 steps
(len (list 1 2 3 4)) = 28 steps

If nis the length of the list, number of steps = f(n) = 6n + 4

To measure efficiency, we count substitution steps

(2] ® Stepper

Beginning || Previous Call 1§ Previous ||| Selected ¢ Next[»| Next Call [px End PP 23/28| x

(define (len 1lst) (define (len 1lst) ~
(cond (cond 23/28
((empty? 1st) 0) ((empty? 1st) 0)

(else (addl (len (rest 1st)))))) (else (addl (len (rest 1st))))))

(add1 (addl (addl (addl (addl 0))))

(add1 =
(add1
(add1

(cond
(true 0)
(else
(add1l (len (rest empty)))))))))

Adding one to each element of a list of numbers "‘

(define (addl-list 1lst)
(cond [(empty? 1lst) empty]
[else (cons (addl (first 1lst))
(addl-1list (rest 1lst)))]))

(addl-list empty) = 4 steps
(addl-1list (list 0)) = 12 steps
(addl-1list (list 0 1)) = 20 steps
(addl-1list (list 0 1 2)) = 28 steps
(addl-1list (list 0 1 2 3)) = 306 steps

A substitution step is a unit of time. "\

The efficiency of a computation is usually described in terms of the “time” it takes
for the computation to complete.

While this time could be measured in milliseconds, nanoseconds, or even hours,
it's often measured more abstractly—as the number of some basic computational
operation required to complete the computation, such as substitution steps.

When we talk about the number of substitution steps required to perform a
computation, it's normal (and even common) to talk about the “time” taken to
complete the computation.

We are usually interested in the worst case time to perform a computation in terms
of n, where n is often a measure of the data size, such as the length of a list.

L08.2 Math class

Huh? Why are there no slides? "\

We treat this module as a traditional math class.
Your instructor will write on the board.

Practical examples and a summary of key ideas for assignments and exams will
be provided in Lecture 09 (the next lecture).

If you work with Accessibility Services. They will have a copy of the notes for you.

11

L08.3 Applying Big-O

Big-O in practice

Name | Big-O Notation
Constant O(1)
Logarithmic O(logn)
Linear O(n)
“n log n” O(nlogn)
Quadratic O(n?)
Cubic O(n?)
Exponential O(2")

A

Since a substitution step is
a unit of time, we often talk
about the “time complexity”
of a function.

For example, addl-1list
has linear time complexity.

In the next lecture, we will
look at specific examples of
linear, quadratic and
exponential functions.

13

Efficiency of built-in length vs. our 1en function "\

(length empty) = 1 step

(length (list 1)) = 1 step
(length (list 1 2)) = 1step
(length (list 1 2 3)) = 1step
(length (list 1 2 3 4)) = 1step

Built-in functions take one step, but you should consider their efficiency to be the
same as if you had written the equivalent function using directly on a list, i.e., you
should consider the built-in Length function to be linear in the length of the list.

You can assume that all other currently allowed built-in functions (other than
length) are constant time, i.e., O(1). Future lectures will have other examples.

14

Lecture 8 Summary

L08: You should know "\

e How categorize the behaviour of functions using “Big-O notation”.
e How to use list abbreviations to write lists.
e How to use the stepper to measure efficiency.

We will see many more examples of measuring efficiency in Lecture L0O9, and we
provide a summary of key points for assignments and exams at the end of that
lecture.

16

LO8: Allowed constructs "\

Newly allowed constructs:
list

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos addl and asin atan boolean? check-expect
check-within cond cons cons? cos define e else empty empty?
even? exp expt false first inexact? integer? length list?
log max min not number? odd? or pi quotient rational?
remainder rest second sin sqr sqrt subl symbol? symbol=? tan
third true zero?

listof Any anyof Bool Int Nat Num Rat Sym

Recursion must follow the Rules for Recursion (second version)

17

