The final rules
CS135 Lecture 10



Rules for recursion (LO6 version) "\

1. Change one argument closer to termination while recurring. No other

arguments can change.
2. When recurring on a natural number use (subl n) and test termination with

zero?
3. When recurring on a list use (rest 1lst) and test termination with empty?

In this version, the argument in #1 is always the same argument and no other
arguments can change.

Together, #2 and #3 guarantee that the function will terminate because the
argument always gets “smaller” until it reaches a base case.



Finalizing the Rules for Recursion "\

In this lecture we will make two final extensions to our rules:

1. We will allow recursion on more than one argument. Arguments involved in
recursion should either be unchanged or get closer to the base case. At least
one argument should be closer to the base case on each recursive call.

2. Arguments that aren’t involved in recursion can change.

We’ll made one extension at a time...



L10.0 Indexing a list



The nth item in a list

;; Produce the nth item in a list
;; index: Nat (listof Any) -> Any
(define (index n 1lst) ...)

Since nis a natural number, it's simplest to start indexing from O:
(check-expect (index 4 (l1list 0 1 2 3 4 5)) 4)
(check-expect (index 2 (list 'a 'b 'c 'd 'e)) 'c)

What to do if n is = than the length of the list? Maybe just produce empty?
(check-expect (index 100 (list 0 1 2 3 4 5)) empty)
(check-expect (index 100 empty) empty)



Key observation

The solution to

(index 2 (list 'a 'b 'c 'd 'e))
Is the same as the solution to

(index 1 (list 'b 'c 'd 'e))
Is the same as the solution to

(index 0 (list 'c 'd 'e))

On each recursive call we subl from n and recurse on the rest of the list.

Eventually either n = 0 or the list is empty. What then?



Recursion on a natural number and a list "‘

If more than one argument changes we need to explicitly check all base cases.
So the body of our index function will look like one of these:

(define (index n lst)
(cond [ (empty? 1st) ...]
[ (zero? n) ...]

-)

(define (index n lst)
(cond [(zero? n) ...]
[ (empty? 1st) ...]
) Which one?



Recursion on two arguments "\

Let’s think about what we do for each base case and decide

(define (index n lst)
(cond [ (empty? 1lst) empty]
[ (zero? n) (first 1lst)]
-)

(define (index n lst)
(cond [ (zero? n) (first 1lst)]
[ (empty? 1lst) empty]
-)

You have all the pieces to finish the function. Try to put them together yourself.



Generalizing £irst and rest "\

(define (first-n n 1lst)
(cond [ (or (empty? 1lst) (zero? n)) empty]
[else (cons (first 1lst)
(first-n (subl n) (rest 1lst)))]))
(check-expect (first-n 3 (list 1 2 3 4 5 6 7)) (list 1 2 3))

(define (rest-n n lst)
(cond [ (or (empty? 1st) (zero? n)) 1st]
[else (rest-n (subl n) (rest 1lst))]))
(check-expect (rest-n 3 (1list 1 2 3 4 5 6 7)) (list 4 5 6 7))



Rules for Recursion (almost the final version) "\

1.

Change at least one argument closer to termination while recurring
When recurring on a natural number use (subl n) and test termination with

zero?
When recurring on a list use (rest 1lst) and test termination with empty?
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L10.1 Recursion on two lists



Vectors "\

In mathematics, a vector is a set of numbers arranged in a specific order, often
used to represent a point in space or a direction and magnitude.

For example, <3, 5, 2> is a vector with three elements. Each element corresponds
to a coordinate or a value in a specific dimension.

In Racket, we represent a vector as a list of numbers:
(list 3 5 2)
(list -10.6 14.8 23.7 0.03 111.8)

For convenience, we define the empty vector with no entries, as empty.

12



Dot Product "\

A dot product is a way of multiplying two vectors.

To compute the dot product of two vectors, we multiply entries in corresponding
positions (first with first, second with second, and so on) and sum the results.

(123)-(456)=1x4+2x5+3x6=4+10+18 =32
(check-expect (dot-product (list 1 2 3) (list 4 5 6)) 32)

What do we do if the lists are of different lengths?
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Recursion on two lists "\

If more than one argument changes we need to explicitly check all base cases.

;; compute the dot product of two wvectors
;; dot-product: (listof Num) (listof Num) -> Num
(define (dot-product 1stl 1lst2)
(cond [ (empty? 1stl) O]
[ (empty? 1lst2) O]
-)
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Recursion on two lists "\

Change at least one argument closer to termination while recurring:

;; compute the dot product of two wvectors
;; dot-product: (listof Num) (listof Num) -> Num
(define (dot-product 1stl 1lst2)
(cond [ (empty? 1stl) O]
[ (empty? 1lst2) O]
[else (+ (* (first 1lstl) (first 1lst2))
(dot-product (rest 1stl) (rest 1st2)))1]))

In this case both change. This is called recursion in “lockstep”.

The index function is an example of a natural number and list in lockstep.
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Merging two sorted lists. "\

Design a function merge that consumes two lists of numbers. Each consumed list is
sorted in ascending order. Produced list is in ascending order.

;; merge: (listof Num) (listof Num) -> (listof Num)
;; Requires: lists must be sorted in ascending order
(define (merge 1stl 1lst2)
(cond [ (empty? 1stl) 1st2]
[ (empty? 1lst2) 1stl] ...))
(check-expect (merge (list 2 4 6 8) (list 1 3 5 7))
(list 1 2 3 4 5 6 7 8))
(check-expect (merge (list 1 2 2 3 3) (list 1 2 3 3))
(list 1 1 2 2 2 3 3 3 3))
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Merging two sorted lists

If neither list is empty, there are three cases:

Case #1 [(< (first lstl) (first lst2))
Case#2 [(> (first lstl) (first lst2))

Case #3 [else ;; the first elements are equal
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Case#1 [(< (first 1lstl) (first 1lst2))

(merge (list 1 3 3 7) (1list 2 3 9 11))

T~

[ (< (first 1lstl) (first 1lst2))
(cons (first 1stl) (merge (rest 1lstl) 1lst2))]

\
(cons 1 (merge (list 3 3 7) (list 2 3 9 11))

A
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Case#2 [(> (first 1lstl) (first 1lst2))

(merge (list 3 3 7) (1list 2 3 9 11))

T~

[ (> (first 1lstl) (first 1lst2))
(cons (first 1st2) (merge 1lstl (rest 1st2)))]

\
(cons 2 (merge (list 3 3 7) (1list 3 9 11)))

A
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Case #3 [else

(merge (list 3 3 7) (1list 3 9 11))

T~

[else (cons (first 1lstl)
(cons (first 1lst2)
(merge (rest 1stl) (rest 1st2))))]

T~

(cons 3 (cons 3 (merge (list 3 7) (list 9 11)))
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Merging two sorted lists. "\

;; merge: (listof Num) (listof Num) -> (listof Num)
;; Requires: lists must be sorted in ascending order
(define (merge 1stl 1lst2)
(cond [ (empty? 1stl) 1st2]
[ (empty? 1lst2) 1stl]
[( (first 1lstl) (first 1lst2))
(cons (first 1stl) (merge (rest 1lstl) 1lst2))]
[ (> (first 1lstl) (first 1lst2))
(cons (first 1st2) (merge 1lstl (rest 1st2)))]
[else (cons (first 1lstl)
(cons (first 1lst2)
(merge (rest 1stl) (rest 1st2))))1))
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L10.2 Accumulators



Reversing a list in lecture L0O9 "\

(define (attach element 1lst)
(cond [ (empty? 1lst) (cons element empty) ]
[else (cons (first 1lst) (attach element (rest 1lst)))]))
(define (rev 1l1lst)

(cond [ (empty? 1lst) empty]
[else (attach (first 1lst) (rev (rest 1lst)))]))

Steps to reverse a list of length n = 3.5n+ 6.5n + 4 = O(n?)

Can we do better?
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Reversing a list "\

Reverse would straightforward if we could build a list during recursion.

List A List B

(list 1 2 3 4 5) empty

(list 2 3 4 5) _ ~(list 1)

(list 3 4 5) (list 2 1)

(1list 4 5) T~ (list 3 2 1)
(list 5) T~ (list 4 3 2 1)
empty T~ (list 5 4 3 2 1)

Each step of the recursion we remove an element from List A and add it to List B.
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Reversing a list "‘

We can build a list during recursion if we allow arguments not involved in recursion
to change. In this case, we will have a second argument that will increase.

(define (rev/accumulate lst accumulator)
(cond [ (empty? 1st) accumulator]
[else (rev/accumulate
(rest 1lst)
(cons (first 1lst) accumulator))]))

We still use (rest 1lst) and test termination with empty? so we know the function
will terminate. The argument that increases is called an “accumulator”.
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Reversing a list

In the stepper, we see:

(rev/accumulate
(rev/accumulate
(rev/accumulate
(rev/accumulate
(rev/accumulate
(rev/accumulate

(list 1 2 3 4 5) empty)= ...
(list 2 3 4 5) (list 1))=...
(list 3 4 5) (1list 2 1))= ...
(list 4 5) (list 3 2 1))=...
(list 5) (list 4 3 2 1))= ...

empty (list 5 4 3 2 1))

The base case is: [ (empty? 1lst) accumulator]

The base case produces the accumulator.

=

1441
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Wrapping it up "\

Accumulators need to be initialized (in this case to empty). This initialization
happens in a wrapper function.

(define (rev/accumulate lst accumulator)
(cond [ (empty? lst) accumulator]
[else (rev/accumulate
(rest 1lst)
(cons (first 1lst) accumulator))]))
(define (rev 1lst)
(rev/accumulate lst empty))

We have already seen other examples of wrapper functions this term.
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Efficiency

(rev empty) = 5 steps

(rev (list 1))= 12 steps
(rev (list 1 2))= 19 steps
(rev (list 1 2 3))= 26 steps

(rev (list 1 2 3 4 5 6 7 8 9 10))= 75 steps

Total steps (where n is the length of the list): 7n + 5 = O(n), i.e., linear.
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Built-in reverse "\

DrRacket has a built-in function reverse that you can now use as appropriate.

Like the built-in functions 1length and append, you should think of the efficiency
of reverse as linear in the size of the consumed list even though in the stepper it

only takes one step.

Recursion using an accumulator can be tricky. If you write a function where the
answer comes out “backwards” it can be better to reverse the answer in a
wrapper, rather than trying get an accumulator working.

Be super-careful to avoid reverse in the body of a recursive function.
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Accumulative recursion "\

An accumulator is a function parameter that keeps track of partial results during
recursion.

Instead of waiting until the recursion reaches the end and then combining results
on the way back up, an accumulator carries the needed information along as the
recursion goes down. This can make the function more efficient and easier to
reason about.

Accumulators can take some time and examples to understand, so we'll go slow.
We will have more examples in coming lectures.
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Counting down "\

The Rules for Recursion make it easy to generate a list of natural numbers in
decreasing order.

(define (count-down n)
(cond [(zero? n) (list 0)]
[else (cons n (count-down (subl n)))]1))
(check-expect (count-down 9) (list 9 8 7 6 5 4 3 2 1 0))

But to generate a list of numbers in increasing order, while following the rules, we
either need to use reverse, do some arithmetic with n, or count up with an
accumulator.
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Counting up with an accumulator "\

;; Produce a strictly increasing list of natural numbers by
;; counting up from a natural number n times
;; count-up: Nat Nat -> (listof Nat)
(define (count-up from n)
(cond [ (zero? n) empty]

[else (cons from (count-up (addl from) (subl n)))]1))

(check-expect (count-up 100 5)
(list 100 101 102 103 104))
(check-expect (count-up 9999999 0) empty)
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Rules for recursion (final version) "\

1.

-

Change at least one argument closer to termination while recurring
When recurring on a natural number use (subl n) and test termination with

zero?
When recurring on a list use (rest 1lst) and test termination with empty?

Arguments that aren’t involved in recursion can change.
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Lecture 10 Summary



L10: You should know

The final “Rules for Recursion”. You must stick to these rules for now.
Recursion on a natural number and a list.

Recursion on two lists, including the “lockstep” pattern.
Accumulators and accumulative recursion.

How to reverse a list using an accumulator.

A
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L10: Allowed constructs "\

Newly allowed constructs:
reverse
Rules for Recursion (final version)

Previously allowed constructs:

() [ 1 +-*/=<><=>=

abs acos addl and append asin atan boolean? check-expect
check-within cond cons cons? cos define e else empty empty?
even? exp expt false first inexact? integer? length 1list
list? log max min not number? odd? or pi quotient rational?
remainder rest second sin sqr sqrt subl symbol? symbol=? tan
third true zero?

listof Any anyof Bool Int Nat Num Rat Sym
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