Lists of Lists
CS135 Lecture 11

Reminder: Rules for recursion "\

1. Change at least one argument closer to termination while recurring

2. When recurring on a natural number use (subl n) and test termination with
zero?

3. When recurring on a list use (rest 1lst) and test termination with empty?

4. Arguments that aren’t involved in recursion can change.

So far, all problems in CS135 earrt must be solved under these rules.

We will continue to stick to these rules for now. We will start to explore outside
these rules in a few lectures, but not today.

L11.0 Polygons

A polygon is a list of points

2.0

15

1.0f

0.5f

0.0

—-0.5F

-1.0f

=15

(1.9, 0.6)

"(-'I 2.-16)

J (1.2,-1.6)

-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 20

X

(list
(list 1.9 0.6)
(list 1.2 -1.6)
(list -1.2 -1.6)
(list -1.9 0.6)
(list 0 2))

In our examples we will assume
all polygons are simple, i.e., the
segments don'’t cross

How to compute the perimeter?

Helper functions for points "\

a Point is a (x,y) point in the Cartesian coordinate system
a Point is a (list Num Num)

;; mk-point consumes an x and y coordinate and produces a Point
;; mk-point: Num Num -> Point

(define (mk-point x y) (list x y))

;; get the x coordinate from a Point

;; get-x: Point -> Num

(define (get-x point) (first point))

;; get the y coordinate from a Point
;; get-y: Point -> Num
(define (get-y point) (second point))

Distance between two points: d= \/(z, — 20)2 + (1 — v)? "\

;; distance between two points
;; d: Point Point -> Num
(define (d pO0 pl)
(sgrt (+ (sqgr (- (get-x pl) (get-x p0)))
(sqr (- (get-y pl) (get-y p0))))))

(check-within (d (mk-point 1 5) (mk-point 4 1))
5 0.00001)

(check-within (d (mk-point -1 -1) (mk-point -2 -2))
(sgrt 2) 0.00001)

Add the lengths of segments between successive points "‘

;; Add successive line segments in a list of point
;; add-segments: (listof Point) -> Num
(define (add-segments lop)
(cond [(or (empty? lop) (empty? (rest lop))) O]
[else (+ (d (first lop) (second lop))
(add-segments (rest lop)))1]1))
(define square
(list (mk-point 1 1) (mk-point -1 1)
(mk-point -1 -1) (mk-point -1 1)))
(check-within (add-segments square) 77?7 0.00001)

What'’s the problem?

Computing the perimeter of a polygon

;; Compute the perimeter of a polygon
;; perimeter: (listof Point) -> Num
;; Requires: points form a simple polygon
(define (perimeter polygon)
(+ (d (first polygon) (last polygon))
(add-segments polygon)))
(check-within (perimeter square) 8 0.00001)
(check-within
(perimeter
(list (1list 1.9 0.6) (list 1.2 -1.6)

(list -1.2 -1.6) (list -1.9 0.6) (list 0 2)))

11.73 0.01)

Perimeter of a polygon: Alternative solution

In the previous solution, we had to “traverse” the list twice: once to add up the
segments and once to find the last point. Can we do better?

Idea: A version of add-segment with the initial point as an extra argument.

;; Add successive line segments with wrapping
; ; add-segments/wrap: Point (listof Point) -> Num
(define (add-segments/wrap p0 lop)
(cond [(empty? lop) O]
[(empty? (rest lop)) (d pO (first lop))]
[else (+ (d (first lop) (second lop))
(add-segments/wrap p0 (rest lop)))]1))

A

Perimeter of a polygon: Alternative solution "\

;; Compute the perimeter of a polygon

;; perimeter/v2: (listof Point) -> Num

;; Requires: points form a simple polygon

(define (perimeter/v2 polygon)
(add-segments/wrap (first polygon) polygon))

(check-within (perimeter/v2 square) 8 0.00001)
(check-within

(perimeter/v2
(list (list 1.9 0.6) (list 1.2 -1.6)

(list -1.2 -1.6) (list -1.9 0.6) (list 0 2)))
11.73 0.01)

Which version is “better”?

10

L11.1 Tables

Example: A multiplication table as a list of lists

10

11

12

-

10

11

12

10

12

14

16

18

20

22

24

© | o W | W

12

15

18

21

24

27

30

33

36

o o »~A|INDN

16

20

24

28

32

36

40

44

48

15

20

25

30

35

40

45

50

55

60

12

18

24

30

36

42

48

54

60

66

72

14

21

28

35

42

49

56

63

70

T/

84

16

24

32

40

48

56

64

72

80

88

96

© O N oo g A~ W DN

© (00| N oo MW | N

18

27

36

45

54

63

7

81

90

99

108

=
o

=i
o

20

30

40

50

60

70

80

90

100

110

120

=y
—y

—_
—y

22

33

44

55

66

i/

88

99

110

121

132

=y
N

-
N

24

36

48

60

72

84

96

108

120

132

144

Since this is CS135, we start at O:

(list

(list 00 0000 00O0O0O0 O 0)

(list 01 234567 8 9 10 11 12)

(list 0 2 4 6 8 10 12 14 16 18 20 22 24)

(list 0 3 6 9 12 15 18 21 24 27 30 33 36)

(list 0 4 8 12 16 20 24 28 32 36 40 44 48)
(list 0 5 10 15 20 25 30 35 40 45 50 55 60)
(list 0 6 12 18 24 30 36 42 48 54 60 66 72)
(list 0 7 14 21 28 35 42 49 56 63 70 77 84)
(list 0 8 16 24 32 40 48 56 64 72 80 88 96)
(list 0 9 18 27 36 45 54 63 72 81 90 99 108)
(list 0 10 20 30 40 50 60 70 80 90 100 110 120)
(list 0 11 22 33 44 55 66 77 88 99 110 121 132)
(list 0 12 24 36 48 60 72 84 96 108 120 132 144))

A

12

Generating nxm multiplication table

;; Generate an nXm multiplication table
;; times: Nat Nat -> (listof (listof Nat))
(define (times n m) (...)

(check-expect (times 3 5)

(list (list 0 0 0 0 O 0)
(list 0 1 2 3 4 5)
(list 0 2 4 6 8 10)
(list 0 3 6 9 12 15)))

13

Generating one row of an nxm multiplication table "‘

;; Generate a times table row

;; times/row: Nat Nat Nat -> (listof Nat)
(define (times/row n m i)

(cond [(zero? i) (list (* n m))]

[else (cons (* n m) (times/row n (addl m) (subl i)))]))

(check-expect (times/row 3 0 5)
(list 0 3 6 9 12 15))

We follow the Rules for Recursion by recursion on 1i.

We use an accumulator (m) to count up, while i controls the recursion.

14

Generating several rows of an nxm multiplication table

;; Generate times table rows

;; times/rc: Nat Nat Nat -> (listof (listof Nat))
(define (times/rc n m i)

(cond [(zero? i) (list (times/row n 0 m))]
[else (cons (times/row n 0 m)

(times/rc (addl n) m (subl i)))]1))
(check-expect (times/rc 2 5 1
(list (list 0 2

(list 0 3

)
4 6 8 10)
6 9 12 15)))

15

Generating nxm multiplication table

;; Generate an nXm times table
;; times: Nat Nat -> (listof (listof Nat))
(define (times n m)

(times/rc 0 m n))

(check-expect (times 3 5)

(list (list 0 0 0 0 O 0)
(list 0 1 2 3 4 5)
(list 0 2 4 6 8 10)
(list 0 3 6 9 12 15)))

16

Example: Indexing into a table "\

(define (index-table n m table)...)

(check-expect (index-table 2 3 (list
(list 1 2 3 4 5)
(list 'a 'b 'c 'd 'e 'f)
(list 'u 'v 'w 'x 'y 'z)
(list 'red 'green 'blue)))
'X)
(check-expect (index-table 100 100 empty) empty)

If n or m are larger than lengths of the corresponding lists, we produce empty.

Note that empty is a list of lists.

17

Recall index from lecture L10 "‘

(define (index n lst)
(cond [(empty? 1lst) empty]
[(zero? n) (first 1lst)]
[else (index (subl n) (rest 1lst))]))

(check-expect (index 3 (list 'a 'b 'ec 'd 'e)) 'd)
(check-expect (index 100 (list 'a 'b 'c 'd 'e)) empty)

How do we extend to a table?

18

Indexing into a table "\

;; index into a list of lists
;; index-table: Nat Nat (listof (listof Any)) -> Any
(define (index-table n m table)

(index m (index n table)))

(check-expect (index-table 2 3 (list
(list 1 2 3 4 5)
(list 'a 'b 'c 'd 'e 'f)
(list 'u 'v 'w 'x 'y 'z)
(list 'red 'green 'blue)))
vx)
(check-expect (index-table 100 100 empty) empty)

19

L11.2 Subsets

Sets of symbols "\

A data definition for a set of symbols is as follows:
;; A Set i1s a (listof Sym)
;; Requires: symbols must be unique

Given a set, write a function that produces a list of all its non-empty subsets.
(define (subsets set)...)

(check-expect

(subsets (list 'a 'b 'c))

(list (list 'a 'b 'ec) (list 'b 'c) (list 'a 'c)
(list 'e) (list 'a 'b) (list 'b) (list 'a)))

21

Producing a list of non-empty subsets from a set "‘

Breaking the problem down into smaller problems...

1.

Suppose we have a set of subsets and we want to add a new symbol. We can
write a function to expand the set of subsets. For each subset we produce two
subsets, one with the symbol and one without.

Start with the empty set (which is a set of subsets of the empty set). Using the
function in #1, expand with each symbol in turn...

22

#1 Expanding a list of subsets with a new symbol "\

;; Expand a list of subsets with a new symbol
;; expand: Sym (listof Set) -> (listof Set)
;; Requires: new symbol must not appear in the subsets
(define (expand sym subsets)
(cond [(empty? subsets) (cons (list sym) empty)]
[else (cons (cons sym (first subsets))
(cons (first subsets)

(expand sym (rest subsets))))]))
(check-expect
(expand 'i (list (list 'a 'b) (list 'a) (list 'b)))
(list (list 'i 'a 'b) (list 'a 'b) (list 'i 'a) (list 'a)
(list 'i 'b) (list 'b) (list 'i)))

23

#2 Expand with each symbol in turn "\

;; Produce a list of non-empty subsets from a Set
;; subsets: Set -> (listof Set)
(define (subsets lst)
(cond [(empty? 1lst) empty]
[else (expand (first 1lst) (subsets (rest 1st)))]))

(check-expect

(subsets (list 'a 'b 'c))

(list (list 'a 'b 'ec) (list 'b 'c) (list 'a 'c)
(list 'e) (list 'a 'b) (list 'b) (list 'a)))

24

Lecture 11 Summary

L11: You should know A\

How the techniques you learned in previous lectures (LOO to L10) generalize to
lists of lists.

In some sense, there’s nothing “new” in this lecture. The lecture is just series of
examples demonstrating how lists can contain lists (in addition to values like Nat,
Int, Num, Sym, etc.) and how to work with these lists.

26

L11: Allowed constructs "\

Newly allowed constructs:
none

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos addl and append asin atan boolean? check-expect
check-within cond cons cons? cos define e else empty empty?
even? exp expt false first inexact? integer? length 1list
list? log max min not number? odd? or pi quotient rational?
remainder rest reverse second sin sqr sqrt subl symbol?
symbol=? tan third true zero?

listof Any anyof Bool Int Nat Num Rat Sym

27

