Strings

CS135 Lecture 12

L12.0 Characters

Information Interchange "\

Internally, a computer represents everything as numbers. All the values we use in
Racket are represented internally by one or more numbers, including lists.

16 1/3 true 'hello (list 'a 'b 'c)

When we are just computing the value of functions and expressions, we don'’t care
how the values are represented internally, but when we want to display the results
of a computation we need to turn the numbers into pictures, sound, text, etc.

When you hit the “A” key on your keyboard, we need a standard number that
means “A”, so that it is stored correctly in files and displayed correctly on this
screen. That number is 65.

Unicode "\

An international standard (called “Unicode™) assigns a unique number (called a
“code point”) to almost every character in almost every written human language.

Lowercase English letter a = 97

Greek small letter alpha (a) = 945

East Asian character H = 26,085
Ancient Egyptian hieroglyph 0O = 78,323

English letters, punctuation, etc. are assigned code points less than 128. They
were assigned these values before Unicode was invented, under a earlier system
called ASCII (American Standard Code for Information Interchange).

Normally code points are written in base 16 prefaced by a U+ (e.g., U+0061 = 97).

What is a “character’? "\

These glyphs represent the same character. They use different fonts but have the
same code point: A Ad A A

These glyphs represent different characters. They look the same but have
different code points:

A — Latin Capital Letter A (65)

A — Greek Capital Letter Alpha (913)
A — Cyrillic Capital Letter A (1040)

A — Cherokee Letter A (5034)

A Unicode code point represents a character in an abstract sense. A “glyph” is the
graphical shape that visually represents that character in a particular font or style.

When are two characters the “same character”? "\

13 Hh

Lowercase “a” and uppercase “A” are in some sense the “same character”, but
they are assigned different code points, SO THAT THIS SENTENCE DOESN'T
HAVE TO BE ENTIRELY IN CAPITAL LETTERS.

In some sense the following characters are the “same character”, but they are
assigned different code points due to the historical evolution of East Asian writing
systems: IF (simplified Chinese), & (traditional Chinese), BR (Japanese).

Unless you are writing very low level font or display code for an operating system,
web browser, etc., you can generally assume that two characters are the “same
character” if they have the same code point.

When are characters the “same character’? "\

These three characters share the

|E'| |E'| |E'| codepoint (39592) but are not the
== “same character” in exactly the same
sense that ¥, % and &R are not the

“same character”.

In some cases, characters that look distinct in different locales are represented
by the same codepoint. This example, and others like it, are essentially
mistakes in Unicode. See https://en.wikipedia.org/wiki/Han_unification

https://en.wikipedia.org/wiki/Han_unification

Characters in Racket "\

In Racket, when you want to refer to a character as the character itself, it is written
in a special format, starting with #\, followed by the character. For example:

#\a #\a #\H #\O

Welcome to DrRacket, version 8. DrRacket doesn’t have a font for [J, so it is
Language: Beginning Student wi written as a little box containing the base-16
;\ﬁ\a Ao AR Am number corresponding to the code point:

" U+0131f3 = 78,323. If you are reading this as a
#\ B PDF, it may also not appear correct.

#\m

> | However this is still an acceptable character.

All expressions are covered

Beginning Student with List Abbreviations custom v

Operations on characters "\

For CS135 we will only need three operations on characters (unless we indicate
otherwise on an assignment or exam): char?, char=? and char<?

The following expressions are true:
(char? #\a) (char=? #\H #\H) (char<? #\a #\H)

Generally, characters with a natural “alphabetical order” are assigned numbers
that reflect that order. The following expressions are true:
(char<? #\a #\b) (char<? #\a #\p) (char<? #\A #\2)

But things don’t always work the way you might expect:
(char<? #\a #\B) = false

L12.1 Strings

Strings "\

In Racket, a string is a sequence of zero or more characters enclosed in double
quotes:

wu

"Hello world!"

"Chat, j’ai péteée!"

"An investment in knowledge pays the best interest."
"L'instruction est la clé du succes."

"HH$2 /EEI-&]J:O "
"Ich verstehe nur Bahnhof"

We can test if a value is a string with the predicate string?

1

“Escaping” with \ "\

One obvious problem we encounter here is how to have a string with a double
quote in it. How is Racket supposed to know that the double quote is part of your
string and not a marker to indicate the end of your string? We avoid this confusion
by using the backslash (\) as a special "escape" character: it combines with the

character that follows it to tell Racket you want to include something special that
would otherwise confuse it:

"\"Repent, Harlequin!\" Said the Ticktockman"

"This string has a single backslash (\\) in it."

12

Strings are composite values "\

A string can be viewed as a composite value, i.e., as a sequence of characters.
While Racket has lots of builtin string functions, in CS135 we will usually work with
strings by converting them to/from lists with string->1ist and 1list->string.

(string->1list "L'instruction est la clé du succes.")
= (list #\L #\' #\i #\n #\s #\t #\r #\u #\c #\t #\i
#\o #\n #\space #\e #\s #\t #\space #\1 #\a
#\space #\c #\1 #\é #\space #\d #\u #\space
#\s #\u #\c #\c #\e #\s #\.)

(list->string (list #\h #\e #\1 #\1 #\o))
="hello"

13

Contracts and data definitions with characters and strings "‘

In contracts and data definitions, we write Char to indicate a character and Str to
indicate a string.

;; convert a string to a list of characters
;; string->list: Str -> (listof Char)

;; convert a list of characters to a string
;; list->string: (listof Char) -> Str

14

Testing strings for equality "\

Racket has a built-in predicate string=? that tests two strings for equality, which
you can use after this lecture. How would we write an equivalent function with the
tools we have available?

;; Are two strings equal?
;; str=?: Str Str -> Bool
(define (str=? s0 sl) (...))

(check-expect (str=? "hello" "hello") true)
(check-expect (str=? "hello" "ciao") false)
(check-expect (str=? "" "") true)

15

Testing strings for equality "\

;; Are two lists of characters the same?
;; char-list=?: (listof Char) (listof Char) -> Bool
(define (char-list=? locO locl)
(cond [(empty? locO) (empty? locl)]
[(empty? locl) false]
[else (and (char=? (first locO0) (first locl))
(char-list=? (rest loc0) (rest locl)))]))

;; Are two strings equal?
;; str=?: Str Str -> Bool
(define (str=? s0 sl)
(char-list=? (string->list s0) (string->list sl)))

16

Pattern for string processing "\

In CS135, many string processing problems are solved with a basic pattern:

1. Convert each string to a list of characters (string->1ist)
2. Process the lists of characters in a helper function
3. If needed, convert lists of characters back to strings (1ist->string)

Steps #1 and #3 typically happen in a wrapper function.

17

Lexicographical order "\

Strings are typically sorted in “lexicographical order”, as follows:

e Strings are compared character by character from left to right.
e If characters differ, the order is determined by the value of their code points.
e If one string is a prefix of another, the shorter string comes first.

Racket has a built-in predicate (string<?) that compares strings in
lexicographical order, which you can use after this lecture.

These are all true:
(string<? "planet" "plants")
(string<? "plan" "plants")
(string<? "" '"plants")

18

Comparing strings lexicographically

;; Compare lists of characters in lexicographical order
;; char-list<?: (listof Char) (listof Char) -> Bool
(define (char-list<? locO locl)
(cond [(empty? loc0O) (not (empty? locl))]
[(empty? locl) false]
[(char=? (first loc0O) (first locl))
(char-list<? (rest locO) (rest locl))]
[else (char<? (first loc0) (first locl))]))

;; Compare strings in lexicographical order
;; str<?: Str Str -> Bool
(define (str<? s0 sl)
(char-1list<? (string->list s0) (string->list sl)))

19

L12.3 Dictionaries

Dictionaries "

Once upon a time, a dictionary was a book in which you look up a word to find a
definition.

Now we use the word to mean a structure for organizing data (a “data structure”).

A dictionary is a data structure that stores “key-value pairs”.

(2 founc
dictionary (x]

All [Dictionary) British English Apple Wikipedia

letonany dictionary | ‘di/(e)n(e)ri|
dictionary attack T .
noun (plural dictionaries)
a book or electronic resource that lists the words of a language
(typically in alphabetical order) and gives their meaning, or gives the
equivalent words in a different language, often also providing
En llsh information about pronunciation, origin, and usage: /'l look up ‘love'in
g the dictionary | the website gives access to an online dictionary | [as
modifier] : the dictionary definition of ‘smile’.

- The Oxford

Dictionary

« areference book on a particular subject, the items of which are
typically arranged in alphabetical order: a dictionary of quotations.
SECOND EDITION
Volume I = Computing a set of words or other text strings made for use in

A-Bazouki applications such as spellcheckers: the worm attempts to crack
account passwords using a built-in dictionary.

CLARENDON PRESS - OXFORD

Key-value pairs "\

More generally, a dictionary contains a number of unique keys, each with an
associated value.

A book of word definitions: keys are words; values are definitions.

Your contacts list: keys are names; values are telephone numbers

Your seat assignment for midterms: keys are userids; values are seat locations.
Course marks: keys are student numbers; values are marks.

Stocks: keys are symbols; values are prices.

Key-value pairs are a fundamental “abstraction” for organizing data.

22

Keys are unique "\

An important aspect of dictionaries is that keys are unique.

Given a key, we can look it up in the dictionary and get, at most, one value. We
say "at most" because it's possible the key isn't there. But there won't be two of

them.

Values, on the other hand, may be duplicated: for example, each student has a
unique student ID (key), but multiple students might have the same grade (value).

Userid |Mark
asmith| 87
bjones | 64
cwang | 87

23

Dictionary operations "\

What operations might we wish to perform on dictionaries?

e lookup: given a key, produce the corresponding value
e add: add a (key,value) pair to the dictionary
e delete: given a key, delete it and its associated value

The “lookup” operation is also commonly called “£ind” or “search”.
The “add” operation is sometimes called “insert’.
The “delete” operation is sometimes called “remove”.

A dictionary is an abstraction of a data structure, usually called an “abstract data
type”. There multiple ways to implement it.

24

Association lists "\

One simple implementation of a dictionary uses an association list, which is just a
list of (key, value) pairs.

We store the pair as a two-element list. For our example, we will use strings as the
keys and numbers as the values, but keys and values can be other types.

;; An association list (AL) is a (listof (list Str Num))
;; Requires: each key (Str) is unique

(define marks
(list (list "asmith" 87)
(1ist "bjones" 64)
(list "cwang" 87)))

25

The lookup operation "\

Recall that 1lookup consumes a key and a dictionary (association list) and
produces the corresponding value when it's found. But what should 1ookup
produce if it fails?

When the key is not found in the association list, we cannot produce a number.
Every number is a valid value and might be the result of a successful lookup. The
“not found” condition needs to be distinguishable, from successful searches. We'll
use empty to indicate failure.

(check-expect (lookup "bjones" marks) 64)
(check-expect (lookup "dleeted" marks) empty)

26

The lookup operation

;; Lookup a key-value pair in an association list
;; lookup: Str AL -> (anyof Num empty)
(define (lookup key al)
(cond [(empty? al) empty]
[(string=? (first (first al)) key)
(second (first al))]
[else (lookup key (rest al))]))

(check-expect (lookup "bjones" marks) 64)
(check-expect (lookup "dleeted" marks) empty)

27

The delete operator

For reasons that will become clear, we will implement delete next.

;; Delete a key-value pair from an association list
;; delete: Str AL -> AL

(define (delete key al)
(cond [(empty? al) empty]

[(string=? (first (first al)) key)

(rest al)]
[else (cons (first al)

(delete key (rest al)))l))
(check-expect
(delete "bjones" marks)

(list (list "asmith" 87) (list "cwang" 87)))
(check-expect (delete "a37858w" empty) empty)

28

The add operator "\

The add operator adds a key-value to pair to the dictionary.
Since keys must be unique, what do we do if the key is already in the dictionary?

We could:

1. Ignore the new key-value pair and keep the existing one.
2. Delete the existing pair and add the new one.

3. Treatitas an error

In practice, #2 is the most convenient, since it allows us to update a value.

29

The add operator "\

;; Add a key-value pair to an association list
;; add: Str Num al -> al
(define (add key value al)

(cons (list key value) (delete key al)))

(check-expect (add "eyefaild" 48 marks)
(list (list "eyefaild" 48) (list "asmith" 87)
(list "bjones" 64) (list "cwang" 87)))
(check-expect (add "cwang" 100 marks)
(list (list "cwang" 100) (list "asmith" 87)
(1ist "bjones" 64)))

30

Lecture 12 Summary

L12: You should know

How Unicode facilitates information interchange

The relationship between characters and strings

How to convert between strings and lists of characters
How to process strings as lists of characters

The concept of a dictionary as an abstract data type
How to use an association list to implement a dictionary

32

L12: Allowed constructs "\

Newly allowed constructs:
Char char? char=? char<? Str string? string=? string<?
string->list list->string

Previously allowed constructs:

() [1 +-*/=<><=>=

abs acos addl and append asin atan boolean? check-expect
check-within cond cons cons? cos define e else empty empty?
even? exp expt false first inexact? integer? length 1list
list? log max min not number? odd? or pi quotient rational?
remainder rest reverse second sin sqr sqrt subl symbol?
symbol=? tan third true zero?

listof Any anyof Bool Int Nat Num Rat Sym

33

Other comparison predicates on characters and strings "\

The allowed constructs only list: char=? char<? string=? string<?

Given that it's straightforward to construct them from these predicates, we will also
allow you to use other character and string comparison functions without special
permission (or rather we will silently ignore your usage):

char<=? char>? char>=? string<=? string>? string>=?

In general, if both = and < forms of comparison predicates are on the allowed list,
so are the other comparison predicates.

Other string and character functions require explicit permission on assignments
and exams.

34

