
Arrays
Optional Textbook Readings: CP:AMA 8.1, 9.3, 12.1, 12.2, 12.3

The primary goal of this section is to be able to use arrays.

CS 136 Winter 2021 07: Arrays 1



Arrays
C only has two built-in types of “compound” data storage:

• structures

• arrays

int my_array[6] = {4, 8, 15, 16, 23, 42};

An array is a data structure that contains a fixed number of

elements that all have the same type.

Because arrays are built-in to C, they are used for many tasks

where lists are used in Racket, but arrays and lists are very

different. In Section 11 we construct Racket-like lists in C.

CS 136 Winter 2021 07: Arrays 2



int my_array[6] = {4, 8, 15, 16, 23, 42};

To define an array we must know the length of the array in advance

(we address this limitation in Section 10).

Each individual value in the array is known as an element. To

access an element, its index is required.

The first element of my_array is at index 0, and it is written as

my_array[0].

The second element is my_array[1] and the last is my_array[5].

In computer science we often start counting at 0.

CS 136 Winter 2021 07: Arrays 3



example: accessing array elements

Each individual array element can be used in an expression as if it

was a variable.

In addition, the index of the array can be an expression.

int a[6] = {4, 8, 15, 16, 23, 42};

int j = a[0]; // j is 4
int *p = &a[j - 1]; // p points at a[3]

a[2] = a[a[0]]; // a[2] is now 23
++a[1]; // a[1] is now 9

CS 136 Winter 2021 07: Arrays 4



example: arrays & iteration

Arrays and iteration are a powerful combination.

int a[6] = {4, 8, 15, 16, 23, 42};
int sum = 0;

for (int i = 0; i < 6; ++i) {
printf("a[%d] = %d\n", i, a[i]);
sum += a[i];

}
printf("sum = %d\n", sum);

a[0] = 4

a[1] = 8

a[2] = 15

a[3] = 16

a[4] = 23

a[5] = 42

sum = 108

CS 136 Winter 2021 07: Arrays 5



Array initialization
Arrays can only be initialized with braces ({}).

int a[6] = {4, 8, 15, 16, 23, 42};

a = {0, 0, 0, 0, 0, 0}; // INVALID
a = ??? ; // INVALID

Once defined, the entire array cannot be mutated at once, and the

length cannot change. Only individual elements can be mutated.

If there are not enough elements in the initialization braces, the

remaining values are initialized to zero.

int b[5] = {1, 2, 3}; // b[3] & b[4] = 0
int c[5] = {0}; // c[0]...c[4] = 0

CS 136 Winter 2021 07: Arrays 6



Character arrays can be initialized with double quotes (") for

convenience.

The following two definitions are equivalent:

char a[3] = {'c', 'a', 't'};
char b[3] = "cat";

In this example, a and b are character arrays and are not valid

strings. This will be revisited in Section 09.

CS 136 Winter 2021 07: Arrays 7



Like variables, the value of an uninitialized array depends on the

scope of the array:

int a[5]; // uninitialized

• uninitialized global arrays are zero-filled.

• uninitialized local arrays are filled with arbitrary (“garbage”)

values from the stack.

CS 136 Winter 2021 07: Arrays 8



Array length
C does not explicitly keep track of the array length as part of the

array data structure.

You must keep track of the array length separately.

To improve readability, the array length is often stored in a separate

variable.

int a[6] = {4, 8, 15, 16, 23, 42};
const int a_len = 6;

CS 136 Winter 2021 07: Arrays 9



It might seem better to use a constant to specify the length of an

array.

const int a_len = 6;
int a[a_len] = {4, 8, 15, 16, 23, 42}; // NOT IN CS136

This would appear to be a “better style”.

However, the syntax to do this properly is outside of the scope of this

course (see following slide).

In this course, always define arrays using numbers. It is okay to

have these “magic numbers” appear in your assignments.

int a[6] = ...;

CS 136 Winter 2021 07: Arrays 10



Many programming guides recommend using the unsigned

integer type size_t instead of an int to loop through an array.

for (size_t i = 0; i < a_len; ++i) { ... }

For example, array lengths may be greater than INT_MAX.

Because size_t is unsigned , you have to be careful when

looping backwards through an array:

for (size_t i = a_len - 1; i >= 0; --i) { ... }
// infinite loop: i will never be negative

In this course we are not going to use advanced int types,

including size_t.

CS 136 Winter 2021 07: Arrays 11



A preferred syntax to specify the length of an array is to define a

macro.

#define A_LEN 6

int main(void) {
int a[A_LEN] = {4, 8, 15, 16, 23, 42};
// ...

In this example, A_LEN is not a constant or even a variable.

A_LEN is a preprocessor macro. Every occurrence of A_LEN in

the code is replaced with 6 before the program is run.

CS 136 Winter 2021 07: Arrays 12



C99 supports Variable Length Arrays (VLAs), where the length

of an uninitialized local array can be specified by a variable (or

a function parameter) not known in advance. The size of the

stack frame is increased accordingly.

int some_function(int n) {
int m = n * 2;
int a[m]; // length determined at run time
// ...

This approach has many disadvantages and in more recent

versions of C, this feature was removed (made optional). You

are not allowed to use VLAs in this course. In Section 10 we

see a better approach.

CS 136 Winter 2021 07: Arrays 13



Theoretically, in some circumstances sizeof can be used to

determine the length of an array.

int len = sizeof(a) / sizeof(a[0]);

The CP:AMA textbook uses this on occasion.

However, in practice (and in this course) this should be avoided,

as the sizeof operator only properly reports the array size in

very specific circumstances.

CS 136 Winter 2021 07: Arrays 14



Array size
The length of an array is the number of elements in the array.

The size of an array is the number of bytes it occupies in memory.

An array of k elements, each of size s, requires exactly k × s bytes.

In the C memory model, array elements are adjacent to each other.

Each element of an array is placed in memory immediately after the

previous element.

If a is an integer array with six elements (int a[6]) the size of a is:

(6× sizeof(int)) = 6× 4 = 24.

Not everyone uses the same terminology for length and size.

CS 136 Winter 2021 07: Arrays 15



example: array in memory

int a[6] = {4, 8, 15, 16, 23, 42};
printf("&a[0] = %p ... &a[5] = %p\n", &a[0], &a[5]);

&a[0] = 0x5000 ... &a[5] = 0x5014

addresses contents (4 bytes)

0x5000 ... 0x5003 4

0x5004 ... 0x5007 8

0x5008 ... 0x500B 15

0x500C ... 0x500F 16

0x5010 ... 0x5013 23

0x5014 ... 0x5017 42

CS 136 Winter 2021 07: Arrays 16



The array identifier
An array does not have a “value” in C. When an array is used by

itself in an expression, it evaluates (“decays”) to the address of the

array (&a), which is also the address of the first element (&a[0]).

int a[6] = {4, 8, 15, 16, 23, 42};
trace_ptr(a);
trace_ptr(&a);
trace_ptr(&a[0]);

a => 0x5000

&a => 0x5000

&a[0] => 0x5000

Even though a and &a have the same value, they have different

types, and cannot always be used interchangeably.

CS 136 Winter 2021 07: Arrays 17



Dereferencing the array (*a) is equivalent to referencing the first

element (a[0]).

int a[6] = {4, 8, 15, 16, 23, 42};

trace_int(a[0]);
trace_int(*a);

a[0] => 4

*a => 4

CS 136 Winter 2021 07: Arrays 18



Passing arrays to functions
When an array is passed to a function, only the address of the array

is copied into the stack frame.

This is more efficient than copying the entire array to the stack.

Typically, the length of the array is unknown to the function, and

is a separate parameter.

There is no method of “enforcing” that the length passed to a

function is valid.

Functions should require that the length is valid, but there is no way

for a function to assert that requirement.

CS 136 Winter 2021 07: Arrays 19



example: array parameters

int sum_array(int a[], int len) {
int sum = 0;
for (int i = 0; i < len; ++i) {
sum += a[i];

}
return sum;

}

int main(void) {
int my_array[6] = {4, 8, 15, 16, 23, 42};
trace_int(sum_array(my_array, 6));

}

sum_array(my_array, 6) => 108

Note the parameter syntax: int a[]

and the calling syntax: sum_array(my_array, 6).

CS 136 Winter 2021 07: Arrays 20



example: “pretty” print an array

// pretty prints an array with commas, ending with a period
// requires: len > 0

void print_array(int a[], int len) {
assert(len > 0);
for (int i = 0; i < len; ++i) {
if (i) {
printf(", ");

}
printf("%d", a[i]);

}
printf(".\n");

}

int main(void) {
int a[6] = {4, 8, 15, 16, 23, 42};
print_array(a, 6);

}

4, 8, 15, 16, 23, 42.

CS 136 Winter 2021 07: Arrays 21



C allows you to specify the intended length of the array in the

parameter, but it is ignored.

void calendar(int days_per_month[12]) {
// ...

}

In this example, the 12 is ignored. The function may be passed

an array of arbitrary length.

Similarly, some prefer to pass the length of the array first:

void f(int len, int a[len]) {
// ...

}

But since the [len] is ignored (and not enforced) it is more

common to pass the array first.

CS 136 Winter 2021 07: Arrays 22



As we have seen before, passing an address to a function allows the

function to change (mutate) the contents at that address.

void array_negate(int a[], int len) {
for (int i = 0; i < len; ++i) {
a[i] = -a[i];

}
}

It’s good style to use the const keyword to both prevent mutation

and communicate that no mutation occurs.

int sum_array(const int a[], int len) {
int sum = 0;
for (int i = 0; i < len; ++i) {
sum += a[i];

}
return sum;

}

CS 136 Winter 2021 07: Arrays 23



Array within a structure
Because a structure can contain an array:

struct mystruct {
int big[10000];

};

It is especially important to pass a pointer to such a structure,

otherwise, the entire array is copied to the stack frame.

int very_slow(struct mystruct s) {
...

}

int much_faster(struct mystruct *s) {
...

}

CS 136 Winter 2021 07: Arrays 24



Pointer arithmetic
We have not yet discussed any pointer arithmetic.

C allows an integer to be added to a pointer, but the result may not

be what you expect.

If p is a pointer, the value of (p+1) depends on the type of the

pointer p.

(p+1) adds the sizeof whatever p points at.

According to the official C standard, pointer arithmetic is only

valid within an array (or a structure) context. This becomes

clearer later.

CS 136 Winter 2021 07: Arrays 25



Pointer arithmetic rules

• When adding an integer i to a pointer p, the address computed

by (p + i) in C is given in “normal” arithmetic by:

p+ i× sizeof(∗p).

• Subtracting an integer from a pointer (p - i) works in the

same way.

• Mutable pointers can be incremented (or decremented).

++p is equivalent to p = p + 1.

CS 136 Winter 2021 07: Arrays 26



• You cannot add two pointers.

• A pointer q can be subtracted from another pointer p if the

pointers are the same type (point to the same type). The value

of (p-q) in C is given in “normal” arithmetic by:

(p− q)/sizeof(∗p).

In other words, if p = q + i then i = p - q.

• Pointers (of the same type) can be compared with the

comparison operators: <, <=, ==, !=, >=, >

(e.g., if (p < q) ...).

CS 136 Winter 2021 07: Arrays 27



Pointer arithmetic and arrays
Pointer arithmetic is useful when working with arrays.

Recall that for an array a, the value of a is the address of the first

element (&a[0]).

Using pointer arithmetic, the address of the second element &a[1]

is (a + 1), and it can be referenced as *(a + 1).

The array indexing syntax ([]) is an operator that performs

pointer arithmetic.

a[i] is equivalent to *(a + i).

CS 136 Winter 2021 07: Arrays 28



C does not perform any array “bounds checking”.

For a given array a of length l, C does not verify that a[j] is

valid (0 ≤ j < l).

C simply “translates” a[j] to *(a + j), which may be outside

the bounds of the array (e.g., a[1000000] or a[-1]).

This is a common source of errors and bugs and a common

criticism of C. Many modern languages have fixed this

shortcoming and have “bounds checking” on arrays.

CS 136 Winter 2021 07: Arrays 29



In array pointer notation, square brackets ([]) are not used, and

all array elements are accessed through pointer arithmetic.

int sum_array(const int *a, int len) {
int sum = 0;
for (const int *p = a; p < a + len; ++p) {
sum += *p;

}
return sum;

}

Note that the above code behaves identically to the previously

defined sum_array:

int sum_array(const int a[], int len) {
int sum = 0;
for (int i = 0; i < len; ++i) {
sum += a[i];

}
return sum;

}

CS 136 Winter 2021 07: Arrays 30



another example: pointer notation

// count_match(item, a, len) counts the number of
// occurrences of item in the array a
int count_match(int item, const int *a, int len) {
int count = 0;
const int *p = a;
while (p < a + len) {
if (*p == item) {
++count;

}
++p;

}
return count;

}

Remember, for the variable:

const int *p

you can mutate p but you cannot mutate *p.

CS 136 Winter 2021 07: Arrays 31



The choice of notation (pointers or []) is a matter of style and

context. You are expected to be comfortable with both.

C makes no distinction between the following two function

declarations:

int array_function(int a[], int len) {...} // a[]
int array_function(int *a, int len) {...} // *a

In most contexts, there is no practical difference between an array

identifier and an immutable pointer.

The subtle differences between an array and a pointer are

discussed at the end of Section 09.

CS 136 Winter 2021 07: Arrays 32



Array map
Aside from the awkward function pointer parameter syntax, the

implementation of array_map is straightforward.

// array_map(f, a, len) replaces each element a[i]
// with f(a[i])
// effects: modifies a

void array_map(int (*f)(int), int a[], int len) {
for (int i = 0; i < len; ++i) {
a[i] = f(a[i]);

}
}

CS 136 Winter 2021 07: Arrays 33



#include "array_map.h"

int add1(int i) {
return i + 1;

}

int sqr(int i) {
return i * i;

}

int main(void) {
int a[6] = {4, 8, 15, 16, 23, 42};
print_array(a, 6);
array_map(add1, a, 6);
print_array(a, 6);
array_map(sqr, a, 6);
print_array(a, 6);

}

4, 8, 15, 16, 23, 42.

5, 9, 16, 17, 24, 43.

25, 81, 256, 289, 576, 1849.

CS 136 Winter 2021 07: Arrays 34



Selection sort
In selection sort, the smallest element is selected to be the first

element in the new sorted sequence, and then the next smallest

element is selected to be the second element, and so on.

CS 136 Winter 2021 07: Arrays 35



First, we find the position of the smallest element...

8 6 7 5 3 0 9

and then we swap the first element with the smallest.

0 6 7 5 3 8 9

Then, we find the next smallest element...

0 6 7 5 3 8 9

and then we swap that element with the second one, and so forth...

0 3 7 5 6 8 9

CS 136 Winter 2021 07: Arrays 36



void selection_sort(int a[], int len) {
int pos = 0;
for (int i = 0; i < len - 1; ++i) {
pos = i;
for (int j = i + 1; j < len; ++j) {
if (a[j] < a[pos]) {
pos = j;

}
}
swap(&a[i], &a[pos]); // see Section 05

}
}
// Notes:
// i: loops from 0 ... len-2 and represents the
// "next" element to be replaced
// j: loops from i+1 ... len-1 and is "searching"
// for the next smallest element
// pos: position of the "next smallest"

CS 136 Winter 2021 07: Arrays 37



Insertion sort
In Insertion sort, we consider the first element to be a sorted

sequence (of length one).

We then “insert” the second element into the existing sequence into

the correct position, and then the third element, and so on.

For each iteration of Insertion sort , the first i elements are sorted.

We then “insert” the element a[i] into the correct position, moving

all of the elements greater than a[i] one to the right to “make

room” for a[i].

CS 136 Winter 2021 07: Arrays 38



Consider an iteration of insertion sort (i = 3), where the first i (3)

elements have been sorted. We want to insert the element at a[i]

into the correct position.

3 7 8 5 4 9 0

We continue to swap the element with the previous element until it

reaches the correct position.

3 7 5 8 4 9 0

3 5 7 8 4 9 0

Once it is in the correct position, we start on the next element.

3 5 7 8 4 9 0

CS 136 Winter 2021 07: Arrays 39



void insertion_sort(int a[], int len) {
for (int i = 1; i < len; ++i) {
for (int j = i; j > 0 && a[j - 1] > a[j]; --j) {
swap(&a[j], &a[j - 1]);

}
}

}

// Notes:
// i: loops from 1 ... len-1 and represents the
// "next" element to be replaced
// j: loops from i ... 1 and is "inserting"
// the element that was at a[i] until it
// reaches the correct position

CS 136 Winter 2021 07: Arrays 40



Quicksort
Quicksort is an example of a “divide & conquer“ algorithm.

First, an element is selected as a “pivot” element.

The list is then partitioned (divided) into two sub-groups: elements

less than (or equal to) the pivot and those greater than the pivot.

Finally, each sub-group is then sorted (conquered).

Quicksort is also known as partition-exchange sort or Hoare’s

quicksort (named after the author).

CS 136 Winter 2021 07: Arrays 41



We have already seen the implementation of quick sort in

racket.

(define (quick-sort lon)
(cond [(empty? lon) empty]
[else (define pivot (first lon))

(define less (filter (lambda (x)
(<= x pivot)) (rest lon)))

(define greater (filter (lambda (x)
(> x pivot)) (rest lon)))

(append (quick-sort less)
(list pivot)
(quick-sort greater))]))

For simplicity, we select the first element as the “pivot”. A more

in-depth discussion of pivot selection occurs in CS 240.

CS 136 Winter 2021 07: Arrays 42



In our C implementation of quick sort, we:

• select the first element of the array as our “pivot”

• move all elements that are larger than the pivot to the back of

the array

• move (“swap”) the pivot into the correct position

• recursively sort the “smaller than” sub-array and the “larger

than” sub-array

The core quick sort function quick_sort_range has parameters

for the range of elements (first and last) to be sorted, so a

wrapper function is required.

CS 136 Winter 2021 07: Arrays 43



void quick_sort_range(int a[], int first, int last) {

if (last <= first) return; // length is <= 1

int pivot = a[first]; // first element is the pivot
int pos = last; // where to put next larger

for (int i = last; i > first; --i) {
if (a[i] > pivot) {
swap(&a[pos], &a[i]);
--pos;

}
}
swap(&a[first], &a[pos]); // put pivot in correct place
quick_sort_range(a, first, pos - 1);
quick_sort_range(a, pos + 1, last);

}

void quick_sort(int a[], int len) {
quick_sort_range(a, 0, len - 1);

}

CS 136 Winter 2021 07: Arrays 44



Linear search
In Racket, the built-in function member can be used to determine if a

list contains an element.

We can write a similar function in C that finds the index of an

element in an array:

// find(item, a, len) finds the index of item in a,
// or returns -1 if it does not exist

int find(int item, const int a[], int len) {
for (int i = 0; i < len; ++i) {
if (a[i] == item) {
return i;

}
}
return -1;

}

CS 136 Winter 2021 07: Arrays 45



Binary search
If the array is sorted, we can use binary search:

// requires: a is sorted in ascending order [not asserted]
int find_sorted(int item, const int a[], int len) {
int low = 0;
int high = len - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (a[mid] == item) {
return mid;

} else if (a[mid] < item) {
low = mid + 1;

} else {
high = mid - 1;

}
}
return -1;

}

In Section 08 we will see this is more efficient than linear search.

CS 136 Winter 2021 07: Arrays 46



Multi-dimensional data
All of the arrays seen so far have been one-dimensional (1D) arrays.

We can represent multi-dimensional data by “mapping” the higher

dimensions down to one.

For example, consider a 2D array with 2 rows and 3 columns.

1 2 3

7 8 9

We can represent the data in a simple one-dimensional array.

int data[6] = {1, 2, 3, 7, 8, 9};

To access the entry in row r and column c, we simply access the

element at data[r*3 + c].

In general, it would be data[row * NUMCOLS + col].
CS 136 Winter 2021 07: Arrays 47



C supports multiple-dimension arrays, but they are not covered

in this course.

int two_d_array[2][3];
int three_d_array[10][10][10];

When multi-dimensional arrays passed as parameters, the

second (and higher) dimensions must be fixed.

(e.g., int function_2d(int a[][10], int numrows)).

Internally, C represents a multi-dimensional array as a 1D array

and performs “mapping” similar to the method described in the

previous slide.

See CP:AMA sections 8.2 & 12.4 for more details.

CS 136 Winter 2021 07: Arrays 48



Oversized Arrays
A significant limitation of an array is that the length of the array must

be known in advance.

In Section 10 we introduce dynamic memory which can be used to

circumvent this limitation, but first we explore a less sophisticated

approach.

In some applications, it may be “appropriate” (or “easier”) to have an

oversized array with a “maximum” length.

In general, oversized arrays should only be used when appropriate:

• They are wasteful if the maximum length is excessively large.

• They are restrictive if the maximum length is too small.

CS 136 Winter 2021 07: Arrays 49



When working with oversized arrays, we need to keep track of

• the “actual” length of the array, and

• the maximum possible length.

CS 136 Winter 2021 07: Arrays 50



To illustrate oversized arrays, we implement an integer stack

structure with a maximum length of 100 elements.

The len field keeps track of the actual length of the stack.

struct stack {
int len;
int maxlen;
int data[100];

};

We need to provide a stack_init function to initialize the

structure:

void stack_init(struct stack *s) {
assert(s);
s->len = 0;
s->maxlen = 100;

}

CS 136 Winter 2021 07: Arrays 51



Ignoring the push operation for now, we can write the rest of the

stack implementation:

bool stack_is_empty(const struct stack *s) {
assert(s);
return s->len == 0;

}

int stack_top(const struct stack *s) {
assert(s);
assert(s->len > 0);
return s->data[s->len - 1];

}

// note: stack_pop returns the element popped
int stack_pop(struct stack *s) {
assert(s);
assert(s->len > 0);
s->len -= 1;
return s->data[s->len];

}

CS 136 Winter 2021 07: Arrays 52



What happens if we exceed the maximum length when we try to

push an element?

There are a few possibilities:

• the stack is not modified and an error message is displayed

• a special return value can be used

• an assertion fails (terminating the program)

• the program explicitly terminates with an error message

Any approach may be appropriate as long as the contract properly

documents the behaviour.

CS 136 Winter 2021 07: Arrays 53



The exit function (part of <stdlib.h>) stops program execution.

It is useful for “fatal” errors.

The argument passed to exit is equivalent to the return value of

main.

For convenience, <stdlib.h> defines EXIT_SUCCESS which is 0

and EXIT_FAILURE which is non-zero.

if (something_bad) {
printf("FATAL ERROR: Something bad happened!\n");
exit(EXIT_FAILURE);

}

CS 136 Winter 2021 07: Arrays 54



// stack_push(item, s) pushes item onto stack s
// requires: s is a valid stack
// effects: modifies s
// may display output and exit

void stack_push(int item, struct stack *s) {
assert(s);
if (s->len == s->maxlen) {
printf("FATAL ERROR: stack capacity (%d) exceeded\n",

s->maxlen);
exit(EXIT_FAILURE);

}
s->data[s->len] = item;
s->len += 1;

}

CS 136 Winter 2021 07: Arrays 55



Goals of this Section
At the end of this section, you should be able to:

• define and initialize arrays

• use iteration to loop through arrays

• use pointer arithmetic

• explain how arrays are represented in the memory model, and

how the array index operator ([]) uses pointer arithmetic to

access array elements in constant time

• use both array index notation ([]) and array pointer notation and

convert between the two

CS 136 Winter 2021 07: Arrays 56



• use oversized arrays

• describe selection sort, insertion sort, quicksort and binary

search on a sorted array

• represent multi-dimensional data in a single-dimensional array

CS 136 Winter 2021 07: Arrays 57


