
CS 231
Naomi Nishimura

Python session 2

1 Recursion

Files to download: check.py
To try:

• Before looking at the sample solution, try to write a function factorial that produces
the factorial of a nonnegative integer input.

• Remember that 0! = 1 and that for any n > 0, n! = n · n− 1 · · · 1.

• Your solution should use recursion.

Sample solution: sess2q1factorial.py
Python syntax to notice:

• The function factorial calls itself

• The function factorial has a non-recursive base case

2 Recursion using lists

Files to download: check.py
To try:

• Before looking at the sample solution, try to write a function merge that consumes two
sorted lists of integers and produces the sorted list of all the integers in the two lists.

• The output list can be formed by determining which of the two list has the smallest item,
putting that item first and then merging the remaining lists

Sample solution: sess2q2merge.py
Python syntax to notice:

• The function merge calls itself

• The function merge has two non-recursive base cases

• The operation + is used to concatenate two lists



CS 231: Python session 2 2

3 Creating a class

Files to download: check.py
To try:

• Before looking at the sample solution, try to write a class definition Pair such that each
object in the class consists of two fields: item (Any) and value (Int).

• Your class definition should ensure that you can create a new object by using the method
Pair.

• Optional: Create a method repr that represents a Pair as a string.

• Optional: Create a method eq that determines if two pairs have the same values in
both the item and value fields.

• Optional: Use isinstance to check that an object you have created is a Pair.

Sample solution: sess2q3pair.py with tests in sess2q3pairuse.py

Python syntax to notice:

• Use of class

• Indentation in the class definition

• Use of init

• Use of repr

• Use of self

• Use of str to convert values to strings in repr

• Use of isinstance to check if an object is in a class

4 Creating a class and methods

Files to download: check.py, grids.py
To try:

• Before looking at the sample solution, try to write a class definition ThreeD such that each
object in the class consists of four fields: entries (a list of Grids), dim one, dim two, and
dim three (all integers). Your objects can serve as three-dimensional versions of grids,
storing items in locations specified by three values x, y, and z indicating the position,
where the values of x range from 0 to dim one - 1, the values of y range from 0 to dim two

- 1, and the values of z range from 0 to dim three - 1.

• Your class definition should ensure that you can create a new object by using the method
ThreeD.



CS 231: Python session 2 3

• Now add methods repr , access, and enter to your class definition ThreeD.

• The first method should create a string representing your object. There are many possible
options available to you.

• The method access will consume three values x, y, and z, representing a position in three
dimensions, and will produce the data item stored in that location.

• The method enter will consume four values x, y, z and item, representing a position in
three dimensions, and a data item, and will enter the data item in that location.

Sample solution: sess2q4threeD.py with tests in sess2q4threeDuse.py

Python syntax to notice:

• Placement of methods inside the class definition

• Use of repr

• Use of self

5 Sorting pairs

Files to download: check.py, sess2q3pair.py
To try:

• Before looking at the sample solution, try to write a function pairs sort up that consumes
a list of pairs and produces a list of the pairs in nondecreasing order by value.

• You may wish to write a helper function that extracts the value from a pair.

• Next, try to write a function pairs sort down that consumes a list of pairs and produces
a list of the pairs in nonincreasing order by value.

Sample solution: sess2q5pairsort.py with tests in sess2q5pairsortuse.py

Python syntax to notice:

• Use of key

• Use of reverse

6 Using random

Files to download: check.py
To try:

• Before looking at the sample solution, try to write a function random select that con-
sumes a non-empty list and produces a random item in the list.

• Be careful in selecting the lower and upper bounds of the random integer.



CS 231: Python session 2 4

Sample solution: sess2q6randomselect.py with tests in sess2q6prandomselectuse.py

Python syntax to notice:

• Use of random.randint


