
CS 231
Naomi Nishimura

Module trees.py

1 Introduction

Just like the Python list and the Python dictionary provide ways of storing, accessing, and
modifying data, a tree can be viewed as a way of storing, accessing, and modifying data. Because
Python does not have built-in support for trees, I have supplied a module for use in the course.

This document provides background on the types of trees supported by the module as well
as specifics of the methods and functions provided. The module is not intended to cover all
kinds of trees nor to provide all possible methods and functions. Details of the implementations
of the methods and functions are not discussed here; to learn more about such implementations,
consider taking CS 234.

At times you may be writing pseudocode that uses tree operations. To use a tree method,
simply translate from dot notation, put the name in all capital letters, and capitalize the first
letter in each variable name. For example, instead of tree.set node colour(one, new), write
Set Node Colour(Tree, One, New).

2 Tree basics

A tree can be viewed as a special type of graph that contains no cycles (see the document on
graphs.py for more details on graphs); we will use the term edge as is used for graphs, but
substitute the term node for the term vertex. Thus, a path in a tree is a sequence of nodes such
that there is an edge between each consecutive pair of nodes in the sequence.

In this module, we limit our attention to rooted trees, in which each tree has a node specified
as the root. In a rooted tree, we can view each edge as connecting a node closer to the root (the
parent) to a node farther from the root (the child). Nodes with the same parent are siblings.

We distinguish between nodes that each have at least one child (internal nodes) and nodes
without children (leaves).

In a binary tree, each node can have at most two children, consisting of at most one left child
and at most one right child. One can also distinguish between trees being ordered (where there
is an order imposed on the children of each node) or unordered (where there is no such order).
This module supports only unordered trees.

In the course material, we will consider both rooted and unrooted trees, and possibly both
unordered and ordered trees.

3 Module trees.py

3.1 Objects

The tree module makes use of two different types of objects: Vertex (from graphs.py) and Tree.
In the trees used in the course, each Vertex object has an ID, a weight, and a colour, where



CS 231: Module trees.py 2

the weight is an integer and the other attributes are strings; the default values of the weight
and colour are 0 and "white". The ID of each Vertex must be unique. Note: Even though the
object being used is Vertex (so the same objects can be used in graphs), we will refer to what
they support as nodes, to be consistent with tree terminology. Because each node in the tree,
except the root, has a unique parent, we can associate the edge between a child and its parent
with the child node. An edge can have a weight and a colour; default values are 0 and "white",
respectively.

3.2 Creating a tree from a file

The module trees.py contains three functions that can be used to form an object of type
Tree from a file; make simple tree uses default values for weights and colours of all nodes
and edges, make tree allows the user to specify values of weights and colours for nodes, and
make full tree allows the user to specify values for weights and colours for both nodes and
edges. Each of the functions consumes a string (the name of a file) and produces an object of
type Tree.

For make simple tree, a file containing tree data should contain the following information,
in this order:

• the number of nodes in the tree (on one line),

• ID, number of children, IDs of children (one line per node, even if there are no children,
with the total number of values on a line being the number of children plus two)

For make tree, a file containing tree data should contain the following information, in this
order:

• the number of nodes in the tree (on one line),

• ID, weight, colour, number of children, IDs of children (one line per node, even if there
are no children, with the total number of values on a line being the number of children
plus four)

For make full tree, a file containing tree data should contain the following information, in
this order:

• the number of nodes in the tree (on one line),

• ID, weight, colour, weight of edge to parent (dummy value for root), colour of edge to
parent (dummy value for root), number of children, IDs of children (one line per node,
even if there are no children, with the total number of values on a line being the number
of children plus six)

On the course website you can find examples of text files for use with the functions; the file
sampletree1.txt is designed to be used with make simple tree, the file sampletree2.txt is
designed to be used with make tree, and the file sampletree3.txt is designed to be used for
make full tree. In addition, sampletree4.txt can be used with make tree.



CS 231: Module trees.py 3

3.3 Methods

The table below lists the methods that can be used on objects of the class Tree. Pay close
attention to the types consumed and produced by each method; sometimes you will be handling
objects and sometimes you will be handling string IDs. In all the methods that use them, one
and two are both IDs of nodes in the tree tree. The file treeuse.py gives an example of the
methods being used.

Method What it does Cost

Tree() creates a new empty tree Θ(1)
repr(tree) produces a string of information about

nodes in tree and their children Θ(n)
tree.tree root() produces the ID of the root of tree, if any, Θ(1)

or None if the tree is empty
tree.node weight(one) produces the weight of the node with ID one Θ(1)
tree.node colour(one) produces the colour of the node with ID one Θ(1)
tree.edge weight(one) produces the weight of the edge from the node Θ(1)

with ID one (nonroot) to its parent
tree.edge colour(one) produces the colour of the edge from the node Θ(1)

with ID one (nonroot) to its parent
tree.is leaf(one) produces True if the node with ID one is Θ(1)

a leaf and False otherwise
tree.children(one) produces a list of the IDs of the children Θ(c)

of the node with ID one

tree.parent(one) produces the parent of the node with ID one, Θ(c)
if any, and None if one is the root

tree.add root(one) adds a new node with ID one as the root Θ(1)
of the empty tree tree

tree.add leaf(one, two) adds a new node with ID one as a leaf Θ(1)
that is the child of the node with ID two

tree.set node weight(one, new) updates the weight of the node with Θ(1)
ID one to new

tree.set node colour(one, new) updates the colour of the node with Θ(1)
ID one to new

tree.set edge weight(one, new) updates the weight of the edge from Θ(1)
ID one (nonroot) to its parent to new

tree.set edge colour(one, new) updates the colour of the edge from Θ(1)
ID one (nonroot) to its parent to new

tree a == tree b produces True if tree a and tree b have
the same root IDs, node IDs, and edges see
(but weights and colours can note
differ) below

Due to the way that a tree is implemented, a list produced by a method may not have
the items appear in a predictable order. Please see information on the module equiv.py for
functions to use in such situations.



CS 231: Module trees.py 4

a

b c

d e

i

f g

h

Figure 1: Sample tree 1

You need to ensure that IDs are distinct for all nodes; the code will not check for you.
Because the module is designed to allow you to implement code with trees without consid-

ering the details of how the tree is implemented, the worst-case costs listed in the table are
not intended to reflect the actual costs of this particular implementation. When writing an
algorithm for trees, one often chooses among various options with differing costs for operations.
The costs listed here are not the best possible, but a reasonable choice that you can use for
analysis. Here we use n to denote the number of nodes in tree and c to denote the number of
children of node one; note that c ∈ O(n).

For your convenience, the module also allows you to check for equality of trees (use this only
for tests, please), where root IDs, node IDs, and edges much match but weights and colours can
differ.

4 Using the module to write code

The module uses the modules graphs.py and equiv.py, so make sure that you have downloaded
both before using trees.py.

4.1 Copying trees

If you wish to make a copy of a tree, import the copy module and use copy.deepcopy.

5 Sample trees

Sample trees have been provided for you in the files sampletree1.txt, sampletree2.txt,
sampletree3.txt, and sampletree4.txt. For your convenience, they have been illustrated
here. Code that you write for assignments should work for any tree, not just the samples
provided. The nodes in the illustrations are labeled with the node IDs and, if differing from
the defaults, weights and colours, in that order; similarly, edges are labeled with weights and
colours, in that order.



CS 231: Module trees.py 5

a

b c

d e f

3 red

10 blue

20 blue 5 red 6 blue

4 green

Figure 2: Sample tree 2

4 orange

9 pink8 yellow7 navy

a

b c

e f

j

d

g

k

ih

1 red

2 blue 3 green

5 purple 6 teal

11 black10 brown

8 green

7 red

3 blue 5 blue

11 red9 red 3 red 6 red

2 blue

4 green

Figure 3: Sample tree 3

a

b c

e f

j

d

g

k l

m

ih

Figure 4: Sample tree 4


