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Question 1: You have a list of n integers that you wish to split into equal-size pieces, or rather,
as-close-as-possible-to-equal-size pieces, as the size of the list may not be divisible by 3. Express
the lengths of the biggest and the smallest pieces as integers.

Solution to Question 1:

We will use floors and ceilings to express the sizes of the pieces.
If n/3 is an integer, then n mod 3 ≡ 0. The other two possibilities are n mod 3 ≡ 1 and

n mod 3 ≡ 2, as the remainder cannot be three or greater.

Case 1: n mod 3 ≡ 0

In this case, all pieces are of size n/3 = dn/3e = bn/3c.
Case 2: n mod 3 ≡ 1

In this case, two of the pieces will have bn/3c items and one will have one more item, or
dn/3e.
Case 3: n mod 3 ≡ 2

In this case, one of the pieces will have bn/3c items and two will each have one more item,
or dn/3e.

In all cases, the smallest piece has bn/3c items and the biggest has dn/3e items.

Question 2: Suppose you wish to form a list of k items from a set of n distinct items, where
each item can appear at most once in the list. Two lists are different if they either do not
contain the same items or if they have the same items in a different order. How many different
lists can you form?

Solution to Question 2:

We calculate the number of lists by first determining the number of subsets of k items chosen
from a set of n items and then determining how many orderings there are for each subset.

The number of subsets of size k is simply
(
n
k

)
, which is equal to

(
n
k

)
= n!

k!(n−k)! . The number
of orderings of a subset of k items is k!. Multiplying the two quantities together, we obtain the
result n!

(n−k)! .

Question 3: Show that
∑n

i=2 log i ∈ Θ(n log n) without determining an exact value for the sum.

Solution to Question 3:

To determine an upper bound, we use the idea of replacing each term by an upper bound
on the term. Because the sum consists of n− 1 terms, each of size at most log n, we can show
the sum is in O(n log n).

To determine a lower bound, we can first drop all terms smaller than logdn/2e. After
dropping those terms, we will have dn/2e remaining terms, and each will have size at least
logdn/2e. Because logarithms of bigger numbers are no smaller than logarithms of smaller
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numbers, we know that logdn/2e ≥ log(n/2), and because of the formula log(x/y) = log x−log y,
we know that log(n/2) = log n− log 2 = log n− 1.

We can then form a lower bound on our dn/2e terms of size at least logdn/2e ≥ log(n/2) =
log n − 1 by multiplying the number of terms by the lower bound on their size. We thus have
dn/2e(log n− 1) = dn/2e log n− dn/2e ≥ (n log n)/2− dn/2e.

We observe that when n ≥ 24 = 16, (log n)/4 ≥ 1. Thus, (n log n)/4 ≥ n ≥ dn/2e for
any value of n ≥ 16; the total (n log n)/2 − dn/2e ≥ (n log n)/4 + ((n log n)/4 − dn/2e) ≥
(n log n)/4 = cṅ log n for c = 1/4 and any n ≥ n0 = 16. Summarizing the steps, we have shown
that

∑n
i=2 log i ∈ Ω(n log n), by showing the following for c = 1/4 and any n ≥ n0 = 16:

n∑
i=2

log i ≥
n∑

i=dn/2e

log i ≥ dn/2e logdn/2e ≥ (n log n)/2− dn/2e ≥ (n log n)/4 = cṅ log n

Putting the two results together, we have shown that the sum is in Θ(n log n).

Question 4: Express log((mn)!) in order notation as a function of m and n.

Solution to Question 4:

We can use the fact that log((mn)!) = log(mn × (mn − 1) × · · · × 1) and the formula
log xy = log x + log y to show that log((mn)!) =

∑mn
i=1 log i. Then, using the result of Question

3, we conclude that log((mn)!) ∈ Θ(mn logmn) = Θ(mn(logm + log n)).

Question 5: In a d-ary tree, each internal node can have at most d children.

1. What is the maximum number of leaves in a d-ary tree of height h?

2. What is the minimum number of leaves in a d-ary tree of height h?

3. What is the maximum number of nodes in a d-ary tree of height h?

4. What is the minimum number of nodes in a d-ary tree of height h?

5. What is the maximum height of a d-ary tree with ` leaves?

6. What is the minimum height of a d-ary tree with ` leaves?

Solution to Question 5:

We obtain the maximum number of leaves by ensuring that each internal node has d children
and that all the leaves are at the same level. Because the number of nodes goes up by a factor
of d at each subsequent level, there are dh nodes at level h, and hence dh leaves.

As there is no minimum number of children required for an internal node, in a tree with at
least one node, each internal node can have exactly one child, resulting in a minimum of one
leaf.

The maximum number of nodes is reached when each internal node has d children and all
leaves are at the same level. The total number of nodes in the tree is

∑h
i=0 d

i =
∑h+1

j=1 d
j−1 =

(1−dh+1)
(1−d) . For d a constant, this number is in Θ(dh).

The minimum number of nodes will be one per level, for a total of h + 1 nodes.
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There is no maximum height for a d-ary tree with ` leaves. To see why, even if ` = 1, we
can create a tree with one child for each internal node and make the height as big as we like,
always retaining a single leaf at the last level.

If the number of leaves is a power of d, we can obtain the minimum height by giving each
internal node d children and filling the last level with leaves, for a height of logd `. Otherwise,
we put leaves on the last two levels, so that the height is dlogd `e. When d is a constant, then
Θ(logd `) is equivalent to Θ(log `), using the formula loga x = logb x/ logb a and the fact that Θ
notation ignores constant factors.

Question 6: In all of the following subquestions, P (x) is the predicate “The integer x is odd”
and Q(x) is the predicate “The integer x is greater than 10.”

1. Prove that the following statement is false: “There exists an x such that P (x) is true and
P (x + 1) is true.”

2. Prove that the following statement is true: “There exists an x such that Q(x) is true and
Q(x− 1) is true.”

3. What kind of statement is the following? “For every number x greater than 5, Q(x) is
true.” Prove or disprove it.

Solution to Question 6:

1. To show that the statement is false, we show that the negation of the statement is true.
The negation of the statement is “For all x, if P (x) is true then P (x + 1) is false.” That
is, if x is odd, then we know x + 1 is even, and hence P (x + 1) is false.

2. To show the statement is true, we need to demonstrate a single value of x such that both
Q(x) and Q(x−1) are true. There are many possible choices; in fact, the only x for which
Q(x) is true and Q(x − 1) is false is the value x = 11. For any other example, such as
x = 12, such that Q(x) is true, Q(x− 1) is also true.

3. The statement is a universal statement. To disprove it, we prove its negation, which
is “There exists a number greater than 5 such that Q(x) is false.” We can prove the
statement by providing any of the numbers in the set {6, 7, 8, 9, 10}.

Question 7: Suppose you wished to use induction to prove that a tree with height n has at
most 2n leaves.

1. What is the base case?

2. Provide a proof of the base case.

3. What is the induction step?

4. Provide a proof of the induction step.
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Solution to Question 7:

1. For the base case, n = 0, resulting in a tree with a single node.

2. In a tree with a single node, the single node is a leaf. The number of leaves is thus
2n = 20 = 1.

3. For the induction step, we assume that a tree of height i has at most 2i nodes for any
i ≤ k and show that this implies that a tree of height k + 1 has at most 2k+1 nodes.

4. A tree of height k + 1 consists of a root with at most two children, each of which is the
root of a subtree of height at most k. By our assumption, each of the at most two subtrees
has at most 2k leaves, for a total of at most 2 · 2k = 2k+1.

Question 8: Determine the expected value of the weight of an edge in Sample graph 4, where
an event is the selection of an edge, each edge is equally likely, and the value of an event is the
weight of the selected edge.

Solution to Question 8:

We calculate the expected value by taking the sum of the products of the probabilities of
each event and the value of each event. As there are six edges in the graph, there are six possible
events, each with weight 1/6. Thus, the total cost is 1/6 × 10 + 1/6 × 20 + 1/6 × 30 + 1/6 ×
40 + 1/6× 5 + 1/6× 6 = 1/6× 111 = 111/6.


