University of Waterloo
 CS240 - Fall 2022
 Assignment 1

Due Date: Wednesday September 21 at 5:00pm

Please follow the guidelines for submission on the course webpage.
https://student.cs.uwaterloo.ca/~cs240/f22/assignments.phtml\#guidelines
All logs are base 2. There are 63 marks available; the assignment will be marked out of 60 .

Problem $1 \quad[3+3+3+3+3=15$ marks]

Provide a complete proof of the following statements from first principles (i.e., using the original definitions of order notation).
a) $12 n^{3}+11 n^{2}+10 \in O\left(n^{3}\right)$
b) $12 n^{3}+11 n^{2}+10 \in \Omega\left(n^{3}\right)$
c) $12 n^{3}+11 n^{2}+10 \in \Theta\left(n^{3}\right)$
d) $1000 n \in o(n \log n)$
e) $n^{n} \in \omega\left(n^{20}\right)$

Problem $2 \quad[4+4=8$ marks]

For each pair of the following functions, fill in the correct asymptotic notation among Θ, o, and ω in the statement $f(n) \in \sqcup(g(n))$. Provide a brief justification of your answers. In your justification you may use any relationship or technique that is described in class.
a) $f(n)=\sqrt{n}$ versus $g(n)=(\log n)^{2}$
b) $f(n)=n^{3}(5+2 \cos 2 n)$ versus $g(n)=3 n^{2}+4 n^{3}+5 n$

Problem $3 \quad[6+6=12$ marks]

Prove or disprove each of the following statements. To prove a statement, you should provide a formal proof that is based on the definitions of the order notations. To disprove a statement, you can either provide a counter example and explain it or provide a formal proof. All functions are positive functions.
a) $f(n) \notin o(g(n))$ and $f(n) \notin \omega(g(n)) \Rightarrow f(n) \in \Theta(g(n))$
b) $\min (f(n), g(n)) \in \Theta\left(\frac{f(n) g(n)}{f(n)+g(n)}\right)$

Problem 4 [6 marks]

Suppose n is a power of two and θ is a parameter in the range $2 \leq \theta \leq 3$. Derive an exact closed form for the sum

$$
f(n):=\sum_{i=0}^{\log _{2} n} 4^{i}\left(\frac{n}{2^{i}}\right)^{\theta}
$$

in terms of n and θ. Hint: Re-write the formula as a geometric series, and treat $\theta=2$ as a special case.

Problem $5 \quad[2+2+4+4=12$ marks $]$

Consider the following procedure.

```
pre: n is a positive integer
pre: v[1..n] is a binary vector of length n,
    i.e., each entry is either 0 or 1
foo(v,n)
1. i := 1;
2. while i<=n and v[i]=0 do
3 i := i+1
4 od;
5. for j from 1 to i do
6. print("Hello world!")
7. od;
```

a) How many inputs are there are of size n ?
b) What is the worst case number of calls to print? Give an exact formula in terms of n and justify your answer by giving an example of a worst case input of size n.
c) For $i \in\{1,2, \ldots, n\}$, let S_{i} denote the subset of inputs of size n for which the number of calls to print is i. Describe what an element of S_{i} looks like, and derive an expression for $\left|S_{i}\right|$, the number of elements of S_{i}.
d) What is the average case number of calls to print? Derive an exact closed form formula in terms of n.

Problem 6 [5 marks]

Prove that the following code fragment will always terminate.

```
s := 3*n // n is an integer
while (s>0)
    if (s is even)
```

```
    s := floor(s/4)
else
    s := 2*s
```


Problem 7 [5 marks]

Analyze the following piece of pseudo-code and give a Θ bound on the running time as a function of n. Show your work. A formal proof is not required, but you should justify your answer.

1. mystery $\leftarrow 0$
2. for $i \leftarrow 1$ to $3 n$ do
3. myster $y \leftarrow$ myster $y \times 4$
4. for $j \leftarrow 1388$ to 2010 do
5. for $k \leftarrow 4 i$ to $6 i$ do
6. myster $y \leftarrow$ myster $y+k$
