CS 240 - Data Structures and Data Management

Module 7: Dictionaries via Hashing

Arne Storjohann

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2024

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NULL$

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NULL$

Each operation is $\Theta(1)$.

Total space is $\Theta(M)$.

What sorting algorithm does this remind you of?

Direct Addressing

Special situation: For a known $M \in \mathbb{N}$, every key k is an integer with $0 \le k < M$.

We can then implement a dictionary easily: Use an array A of size M that stores (k, v) via $A[k] \leftarrow v$.

- search(k): Check whether A[k] is NULL
- insert(k, v): $A[k] \leftarrow v$
- delete(k): $A[k] \leftarrow NULL$

Each operation is $\Theta(1)$.

Total space is $\Theta(M)$.

What sorting algorithm does this remind you of? Bucket Sort

Hashing

Two disadvantages of direct addressing:

- It cannot be used if the keys are not integers.
- It wastes space if M is unknown or $n \ll M$.

Hashing idea: Map (arbitrary) keys to integers in range $\{0, \ldots, M-1\}$ (for an integer M of our choice), then use direct addressing.

Details:

- Assumption: We know that all keys come from some universe U. (Typically U = non-negative integers, sometimes |U| finite.)
- We pick a table-size M.
- We pick a hash function $h: U \to \{0, 1, ..., M-1\}$. (Commonly used: $h(k) = k \mod M$. We will see other choices later.)
- Store dictionary in **hash table**, i.e., an array T of size M.
- An item with key k wants to be stored in **slot** h(k), i.e., at T[h(k)].

Hashing example

 $U = \mathbb{N}, M = 11, h(k) = k \mod 11.$

The hash table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

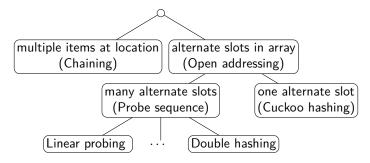
0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
10	43
	·

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
 - ► For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get **collisions**: we want to insert (k, v) into the table, but T[h(k)] is already occupied.

Collisions

- Generally hash function h is not injective, so many keys can map to the same integer.
 - ► For example, h(46) = 2 = h(13) if $h(k) = k \mod 11$.
- We get **collisions**: we want to insert (k, v) into the table, but T[h(k)] is already occupied.
- There are many strategies to resolve collisions:



Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted lists with MTF for buckets.
 This is called collision resolution by chaining.

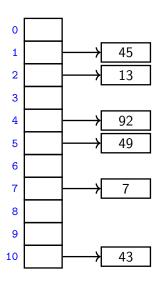
Hashing with Chaining

Simplest collision-resolution strategy: Each slot stores a **bucket** containing 0 or more KVPs.

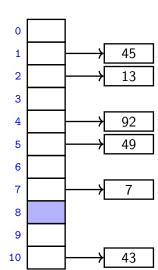
- A bucket could be implemented by any dictionary realization (even another hash table!).
- The simplest approach is to use unsorted lists with MTF for buckets.
 This is called collision resolution by chaining.
- insert(k, v): Add (k, v) to the front of the list at T[h(k)].
- search(k): Look for key k in the list at T[h(k)].
 Apply MTF-heuristic!
- delete(k): Perform a search, then delete from the linked list.

insert takes time O(1). search and delete have run-time O(1 + length of list at T(h(k))).

$$M = 11, \qquad h(k) = k \bmod 11$$



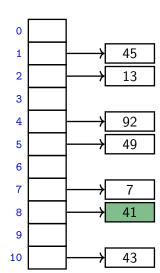
$$M=11, \qquad h(k)=k \bmod 11$$



insert(41)

h(41) = 8

$$M=11, \qquad h(k)=k \bmod 11$$



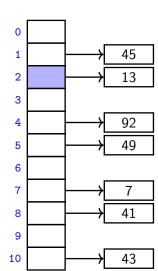
insert(41)

h(41) = 8

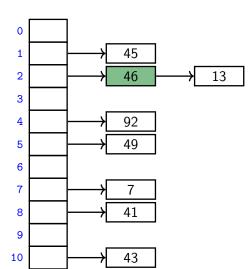
insert(46)

h(46) = 2

$$M=11, \qquad h(k)=k \bmod 11$$



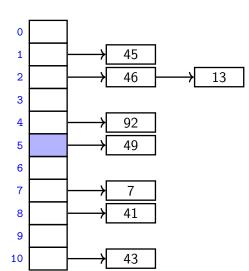
$$M=11, \qquad h(k)=k \bmod 11$$



insert(46)

h(46) = 2

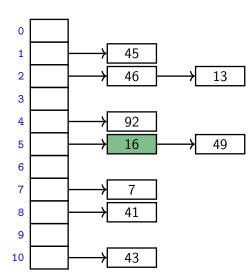
$$M = 11, \qquad h(k) = k \bmod 11$$



insert(16)

h(16) = 5

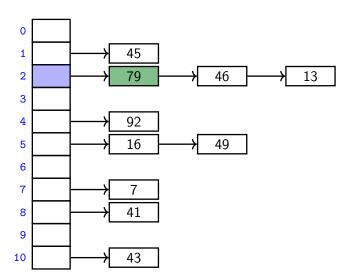
$$M=11, \qquad h(k)=k \bmod 11$$



insert(16)

h(16) = 5

$$M = 11, \qquad h(k) = k \bmod 11$$



insert(79)

h(79) = 2

```
Run-times: insert takes time \Theta(1). search and delete have run-time \Theta(1 + \text{size of bucket } T[h(k)]).
```

• The average bucket-size is $\frac{n}{M}=:\alpha$. (α is also called the **load factor**.)

```
Run-times: insert takes time \Theta(1). search and delete have run-time \Theta(1 + \text{size of bucket } T[h(k)]).
```

- The average bucket-size is $\frac{n}{M} =: \alpha$. (α is also called the **load factor**.)
- However, this does not imply that the *average-case* cost of *search* and *delete* is $\Theta(1 + \alpha)$.
 - Consider the case where all keys hash to the same slot
 - lacktriangle The average bucket-size is still lpha
 - ▶ But the operations take $\Theta(n)$ time on average
- To get meaningful average-case bounds, we need some assumptions on the hash-functions and the keys!

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?

- To analyze what happens 'on average', switch to randomized hashing.
- How can we randomize?
 Assume that the hash-function is chosen randomly.
 - We will later see examples how to do this.
- To be able to analyze, we assume the following:

Uniform Hashing Assumption: Any possible hash-function is equally likely to be chosen as hash-function.

(This is not at all realistic, but the assumption makes analysis possible.)

UHA implies that the distribution of keys is unimportant.

- Claim: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i. Proof:
 - ▶ Let \mathcal{H}_j (for j = 0, ..., M-1) be hash-functions with h(k) = j.
 - ▶ For any $i \neq j$, can map \mathcal{H}_i to \mathcal{H}_j and vice versa.
 - ► So $P(h(k) = i) = P(h \in \mathcal{H}_i) = \frac{1}{M}$.
- Claim: Hash-values of any two keys are independent of each other.

 Proof: similar

UHA implies that the distribution of keys is unimportant.

- Claim: Hash-values are uniform. Formally: $P(h(k) = i) = \frac{1}{M}$ for any key k and slot i. Proof:
 - ▶ Let \mathcal{H}_i (for j = 0, ..., M-1) be hash-functions with h(k) = j.
 - ▶ For any $i \neq j$, can map \mathcal{H}_i to \mathcal{H}_j and vice versa.
 - ► So $P(h(k) = i) = P(h \in \mathcal{H}_i) = \frac{1}{M}$.
- Claim: Hash-values of any two keys are independent of each other.
 Proof: similar

Back to complexity of chaining:

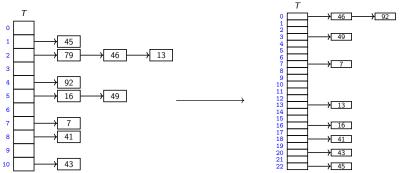
- \bullet Each bucket has expected length $\frac{n}{M} \leq \alpha$
 - ▶ *n* other keys are in this slot with probability $\frac{1}{M}$
- Each key in dictionary is expected to collide with $\frac{n-1}{M}$ other keys
 - ▶ n-1 other keys are in same slot with probability $\frac{1}{M}$
- Expected cost of search and delete is hence $\Theta(1 + \alpha)$

Load factor and re-hashing

 \bullet For hashing with chaining (and also other collision resolution strategies), the run-time bound depends on α

(Recall: *load factor* $\alpha = n/M$.)

• We keep the load factor small by rehashing when needed:



- ▶ Keep track of *n* and *M* throughout operations
- ▶ If α gets too large, create new (roughly twice as big) hash-table, new hash-function(s) and re-insert all items in the new table.

Hashing with Chaining summary

- ullet For Hashing with Chaining: Rehash so that $lpha\in\Theta(1)$ throughout
- Rehashing costs $\Theta(M+n)$ time (plus the time to find a new hash function).
- Rehashing happens rarely enough that we can ignore this term when amortizing over all operations.
- We should also re-hash when α gets too small, so that $M \in \Theta(n)$ throughout, and the space is always $\Theta(n)$.

Summary: The amortized expected cost for hashing with chaining is O(1) and the space is $\Theta(n)$

(assuming uniform hashing and $\alpha \in \Theta(1)$ throughout)

Theoretically perfect, but too slow in practice.

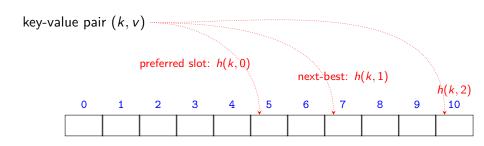
Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

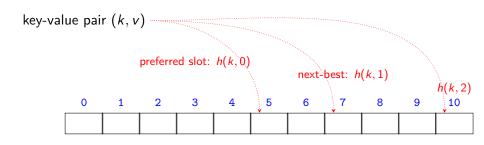
search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \dots h(k,M-1) \rangle$ until an empty spot is found.



Open addressing

Main idea: Avoid the links needed for chaining by permitting only one item per slot, but allowing a key k to be in multiple slots.

search and insert follow a **probe sequence** of possible locations for key k: $\langle h(k,0), h(k,1), h(k,2), \dots h(k,M-1) \rangle$ until an empty spot is found.



Simplest method for open addressing: *linear probing* $h(k,j) = (h(k) + j) \mod M$, for some hash function h.

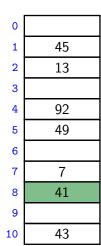
$$M = 11,$$

$$h(k) = k \mod 11$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

0	
1	45
2	13
3	
4	92
5	49
6	
7	7
8	
9	
0	43

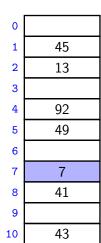
$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(41)

h(41,0) = 8

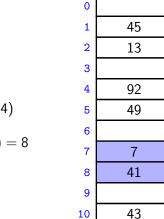
$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(84)

h(84,0)=7

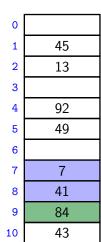
$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(84)

h(84,1) = 8

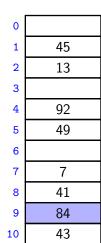
$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(84)

h(84,2) = 9

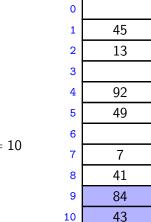
$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(20)

h(20,0)=9

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$



insert(20)

h(20,1)=10

$$M = 11$$
,

$$h(k) = k \mod 11,$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k, j) = (h(k) + j) \mod 11.$

insert(20)

$$h(20,2)=0$$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
0	43

delete becomes problematic:

 Cannot leave an empty spot behind; the next search might otherwise not go far enough.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward.
 (But it is non-trivial to find one that can be moved.)

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward.
 (But it is non-trivial to find one that can be moved.)
- Better idea: lazy deletion:
 - Mark spot as <u>deleted</u> (rather than NULL)
 - Search continues past deleted spots.
 - Insertion reuses deleted spots.

delete becomes problematic:

- Cannot leave an empty spot behind; the next search might otherwise not go far enough.
- We could try to move later items in probe sequence forward.
 (But it is non-trivial to find one that can be moved.)
- Better idea: lazy deletion:
 - Mark spot as deleted (rather than NULL)
 - Search continues past deleted spots.
 - Insertion reuses deleted spots.

Keep track of how many items are 'deleted' and re-hash (to keep space at $\Theta(n)$) if there are too many.

$$M = 11,$$

$$h(k) = k \mod 11$$

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

0	20
1	45
2	13
3	
4	92
5	49
6	
7	7
8	41
9	84
0	43

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	0	20
	1	45
	2	13
	3	
	4	92
delete(43)	5	49
h(43,0) = 10	6	
	7	7
	8	41
	9	84
	10	deleted

A. Storjohann (CS-UW)

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	-	1
	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,0) = 8	6	
	7	7
	8	41
	9	84
	10	deleted

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,1) = 9	6	
	7	7
	8	41
	9	84
	10	deleted

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,2) = 10	6	
	7	7
	8	41
	9	84
	10	deleted

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,3) = 0	6	
	7	7
	8	41
	9	84
	10	deleted

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

20

)
	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,4)=1	6	
	7	7
	8	41
	9	84
	10	deleted

A. Storjohann (CS-UW)

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	· ·	20
	1	45
	2	13
	3	
	4	92
search(63)	5	49
n(63,5)=2	6	
	7	7
	8	41
	9	84
	10	deleted

$$M = 11,$$
 $h(k) = k \mod 11,$ $h(k,j) = (h(k) + j) \mod 11.$

	1	45
	2	13
	3	
	4	92
search(63)	5	49
h(63,6) = 3 not found	6	
	7	7
	8	41
	9	84
	10	deleted

```
probe-sequence::insert(T, (k, v))

1. for (j = 0; j < M; j++)

2. if T[h(k,j)] is NULL or "deleted"

3. T[h(k,j)] = (k, v)

4. return "success"

5. return "failure to insert" // need to re-hash
```

```
probe-sequence-search(T,k)

1. for (j=0;j < M;j++)

2. if T[h(k,j)] is NULL return "item not found"

3. if T[h(k,j)] has key k return T[h(k,j)]

4. // key is incorrect or "deleted"

5. // try next probe, i.e., continue for-loop

6. return "item not found"
```

Independent hash functions

- Some hashing methods require *two* hash functions h_0 , h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.

Independent hash functions

- Some hashing methods require two hash functions h_0, h_1 .
- These hash functions should be *independent* in the sense that the random variables $P(h_0(k) = i)$ and $P(h_1(k) = j)$ are independent.
- Using two modular hash-functions often leads to dependencies.
- Better idea: Use multiplication method for second hash function:

$$h(k) = \lfloor M(kA - \lfloor kA \rfloor) \rfloor$$

- A is some floating-point number with 0 < A < 1
- kA |kA| computes fractional part of kA, which is in [0,1)
- Multiply with M to get floating-point number in [0, M)
- ▶ Round down to get integer in $\{0, ..., M-1\}$

Our examples use $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$ as A.

Double Hashing

- Assume we have two hash independent functions h_0 , h_1 .
- Assume further that $h_1(k) \neq 0$ and that $h_1(k)$ is relative prime with the table-size M for all keys k.
 - ► Choose *M* prime.
 - ▶ Modify standard hash-functions to ensure $h_1(k) \neq 0$ E.g. modified multiplication method: $h(k) = 1 + \lfloor (M-1)(kA - \lfloor kA \rfloor) \rfloor$
- Double hashing: open addressing with probe sequence

$$h(k,j) = (h_0(k) + j \cdot h_1(k)) \mod M$$

 search, insert, delete work just like for linear probing, but with this different probe sequence.

$$M = 11,$$

$$h_0(k) = k \bmod 11,$$

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = |10(\varphi k - |\varphi k|)| + 1$

0	
0	45
2 3 4	13
3	
4	92
5	49
6	
6 7	7
8	
9	
0	43

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 0
 1
 45
 2
 13
 $h_0(41) = 8$
 $h(41,0) = 8$
 4
 92
 5
 49
 6
 7
 7

41

43

8

9

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$
 0
 1
 45
 2
 13
 $h_0(194) = 7$
 $h(194, 0) = 7$
 5
 49
 6
 7
 7
 8
 41

9

10

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

$$h_1(k) = |10(\varphi k - |\varphi k|)| + 1$$

	0	
	1	45
insert(194)	2	13
$h_0(194) = 7$	3	
, ,	4	92
h(194,0)=7	5	49
$h_1(194) = 9$	6	
h(194,1)=5	7	7
	8	41
	9	
	10	43

$$M = 11,$$
 $h_0(k) = k \mod 11,$ $h_1(k) = \lfloor 10(\varphi k - \lfloor \varphi k \rfloor) \rfloor + 1$

$$h_1(k) = |10(\varphi k - |\varphi k|)| + 1$$

insert(194)
$h_0(194) = 7$
h(194,0)=7
$h_1(194) = 9$
h(194,1)=5
h(194,2)=3

0	
1	45
2	13
	194
4	92
5	49
6	
7	7
8	41
9	
0	43

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

Cuckoo hashing

We use two independent hash functions h_0 , h_1 and two tables T_0 , T_1 .

Main idea: An item with key k can *only* be at $T_0[h_0(k)]$ or $T_1[h_1(k)]$.

search and delete then always take constant time.

	T_0
0	44
1	·
2	
1 2 3 4	·
4	59
5	
6	
7	51
8	
9	
10	·

	T_1
0	
1	
2	
2 3 4	
4	
5	
6	
7	
8	
9	92
10	

Cuckoo Hashing Insertion

insert always initially puts the new item into $T_0[h_0(k)]$

- Evict item that may have been there already.
- If so, evicted item inserted at alternate position
- This may lead to a loop of evictions.
 - ► Can show: If insertion is possible, then there are at most 2*n* evictions.
 - So abort after too many attempts.

```
cuckoo::insert(k, v)

1. (k_{insert}, v_{insert}) \leftarrow new key-value pair with (k, v)

2. i \leftarrow 0

3. do at most 2n times:

4. (k_{evict}, v_{evict}) \leftarrow T_i[h_i(k_{insert})] // save old KVP

5. T_i[h_i(k_{insert})] \leftarrow (k_{insert}, v_{insert}) // put in new KVP

6. if (k_{evict}, v_{evict}) is NULL return "success"

7. else // repeat in other table

8. (k_{insert}, v_{insert}) \leftarrow (k_{evict}, v_{evict}); i \leftarrow 1 - i

9. return "failure to insert" // need to re-hash
```

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

	T_0
0	44
1	
2	
3	
4	59
5	
6	
7	
8	
9	
LO	

	T_1
0	
1	
1 2 3 4	
3	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(51)

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$

	T_0
0	44
1	
1 2	
3	
4	59
5	
6	
7	
8	
9	
LO	

	T_1
0	
1	
2	
3	
1 2 3 4 5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(51)

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$

	T_0
0	44
1	
2	
2	
4	59
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
1 2 3 4 5	
3	
4	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 0$$
$$k = 95$$

$$h_0(k) = 7$$

 $h_1(k) = 7$

T_0

	T_1
0	
1	
2 3 4	
3	
4	
5	
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

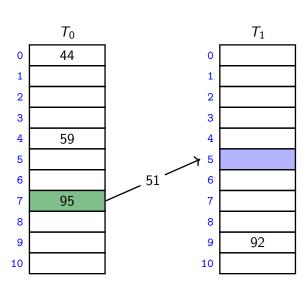
$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 1$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$



$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(95)

$$i = 1$$
$$k = 51$$

$$h_0(k) = 7$$

 $h_1(k) = 5$

T_0

	T_1
0	
1	
2	
3 4	
4	
5	51
6	
7	
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

insert(26)

$$i = 0$$
$$k = 26$$

$$h_0(k) = 4$$

$$h_1(k) = 0$$

	T_0
0	44
1	
2	
1 2 3 4 5	
4	59
6	
6 7 8	95
9	
.0	

	T_1
0	
1	
1 2 3	
3	
4	
5	51
6	
7	
8	
9	92
10	

$$M = 11$$
,

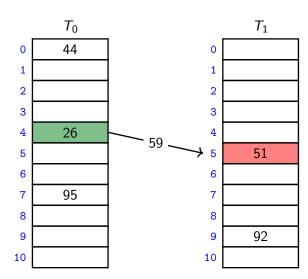
$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 59$$

$$h_0(k) = 4$$

$$h_1(k) = 5$$



$$M = 11$$
,

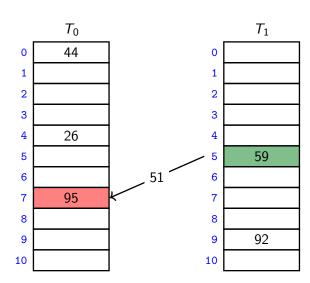
$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 0$$
$$k = 51$$

$$h_0(k) = 7$$

$$h_1(k) = 5$$



$$M = 11$$
,

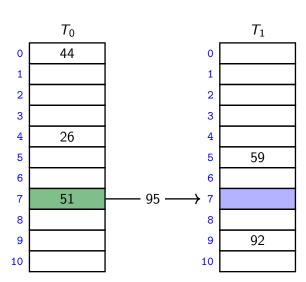
$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 95$$

$$h_0(k) = 4$$

$$h_1(k) = 7$$



$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

$$i = 1$$
$$k = 95$$

$$h_0(k) = 4$$

 $h_1(k) = 7$

	T_0
0	44
1	
1 2 3	
4	26
5	
6	
7	51
8	
9	
LO	

	T_1
0	
1	
1 2 3	
3	
4	
5	59
6	
7	95
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_0(k) = k \mod 11, \qquad h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

search(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$

	T_0
0	44
1	
1 2 3 7	
3	
7	26
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
2	
3	
4	
5	59
6	
7	95
8	
9	92
10	

$$M = 11$$
,

$$h_0(k) = k \bmod 11,$$

$$h_1(k) = \lfloor 11(\varphi k - \lfloor \varphi k \rfloor) \rfloor$$

delete(59)

$$h_0(59) = 4$$

 $h_1(59) = 5$

	T_0
0	44
1	
2	
3	
7	26
5	
6	
7	51
8	
9	
10	

	T_1
0	
1	
2	
1 2 3 4	
5	
6	
7	95
8	
9	92
10	

Cuckoo hashing discussions

- Can show: expected number of evictions during *insert* is O(1).
 - ▶ So in practice, stop evictions much earlier than 2*n* rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.
 - Here $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- Can show: expected space is O(n).

Cuckoo hashing discussions

- Can show: expected number of evictions during *insert* is O(1).
 - ▶ So in practice, stop evictions much earlier than 2*n* rounds.
- This crucially requires load factor $\alpha < \frac{1}{2}$.
 - ▶ Here $\alpha = n/(\text{size of } T_0 + \text{size of } T_1)$
- So cuckoo hashing is wasteful on space.
- In fact, space is $\omega(n)$ if *insert* forces lots of re-hashing.
- Can show: expected space is O(n).

There are many possible variations:

- The two hash-tables could be combined into one.
- Be more flexible when inserting: Always consider both possible positions.
- Use k > 2 allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies

For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have O(1) expected time for search, insert, delete.
- Cuckoo Hashing has O(1) worst-case time for search, delete.
- Probe sequences use O(n) worst-case space, Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is $\Theta(n)$ for *insert*.

Complexity of open addressing strategies

For any open addressing scheme, we *must* have $\alpha \leq 1$ (why?). For the analysis, we require $0 < \alpha < 1$ (not arbitrarily close). Cuckoo hashing requires $0 < \alpha < 1/2$ (not arbitrarily close).

Under these restrictions (and the universal hashing assumption):

- All strategies have O(1) expected time for search, insert, delete.
- Cuckoo Hashing has O(1) worst-case time for search, delete.
- Probe sequences use O(n) worst-case space, Cuckoo Hashing uses O(n) expected space.

But for any hash-function the worst-case run-time is $\Theta(n)$ for *insert*.

In practice, double hashing seems the most popular, or cuckoo hashing if there are many more searches than insertions.

Outline

- Dictionaries via Hashing
 - Hashing Introduction
 - Hashing with Chaining
 - Probe Sequences
 - Cuckoo hashing
 - Hash Function Strategies

- Recall uniform hashing assumption: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
 - Choose a hash-function that is easy to compute.
 - ▶ But aim for $P(\text{two keys collide}) = \frac{1}{M} \text{ w.r.t. key-distribution.}$
 - ► This is enough to prove the expected run-time bounds for chaining

- Recall uniform hashing assumption: Hash function is randomly chosen among all possible hash-functions.
- Satisfying this is impossible: There are too many hash functions; we would not know how to look up h(k).
- We need to compromise:
 - Choose a hash-function that is easy to compute.
 - ▶ But aim for $P(\text{two keys collide}) = \frac{1}{M} \text{ w.r.t. key-distribution.}$
 - ► This is enough to prove the expected run-time bounds for chaining
- In practice: hope for good performance by choosing a hash-function that is
 - unrelated to any possible patterns in the data, and
 - depends on all parts of the key.

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - ▶ We should choose *M* to be a prime.
 - ▶ This means finding a suitable prime quickly when re-hashing.
 - ▶ This can be done in $O(M \log \log n)$ time (no details).

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - ▶ We should choose *M* to be a prime.
 - ▶ This means finding a suitable prime quickly when re-hashing.
 - ▶ This can be done in $O(M \log \log n)$ time (no details).
- Multiplication method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$, for some number A with 0 < A < 1.
 - Multiplying with A is used to scramble the keys. So A should be irrational to avoid patterns in the keys.
 - Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$
 - ▶ We should use at least $\log |U| + \log |M|$ bits of A.

We saw two basic methods for integer keys:

- Modular method: $h(k) = k \mod M$.
 - ▶ We should choose *M* to be a prime.
 - ▶ This means finding a suitable prime quickly when re-hashing.
 - ▶ This can be done in $O(M \log \log n)$ time (no details).
- Multiplication method: $h(k) = \lfloor M(kA \lfloor kA \rfloor) \rfloor$, for some number A with 0 < A < 1.
 - Multiplying with A is used to scramble the keys.So A should be irrational to avoid patterns in the keys.
 - Experiments show that good scrambling is achieved when A is the golden ratio $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618033988749...$
 - ▶ We should use at least $\log |U| + \log |M|$ bits of A.

But every hash function *must* do badly for some sequences of inputs:

• If the universe contains at least $M \cdot n$ keys, then there are n keys that all hash to the same value.

Carter-Wegman's universal hashing

Better idea: Choose hash-function randomly!

- Requires: all keys are in $\{0, \dots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
 - ▶ Choose M < p arbitrarily, power of 2 is ok.
 - ► Choose (and store) two *random* numbers *a*, *b*
 - \star b = random(p)
 - * a = 1 + random(p-1) (so $a \neq 0$)
 - Use as hash-function $h(k) = ((ak + b) \mod p) \mod M$
- h(k) can be computed quickly.

Carter-Wegman's universal hashing

Better idea: Choose hash-function randomly!

- Requires: all keys are in $\{0, \dots, p-1\}$ for some (big) prime p.
- At initialization, and whenever we re-hash:
 - ▶ Choose M < p arbitrarily, power of 2 is ok.
 - Choose (and store) two random numbers a, b
 - \star b = random(p)
 - * a = 1 + random(p-1) (so $a \neq 0$)
 - ▶ Use as hash-function $h(k) = ((ak + b) \mod p) \mod M$
- h(k) can be computed quickly.

Analysis of these Carter-Wegman hash functions (no details):

- Choosing h in this way does not satisfy uniform hashing assumption
- But can show: two keys collide with probability at most $\frac{1}{M}$.
- This suffices to prove the run-time bounds for hashing with chaining.

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings?

Standard approach is to *flatten* string w to integer $f(w) \in \mathbb{N}$, e.g.

$$A \cdot P \cdot P \cdot L \cdot E \rightarrow (65, 80, 80, 76, 69) \text{ (ASCII)}$$

 $\rightarrow 65R^4 + 80R^3 + 80R^2 + 76R^1 + 69R^0$
(for some radix R , e.g. $R = 255$)

We combine this with a modular hash function: $h(w) = f(w) \mod M$

To compute this in O(|w|) time without overflow, use Horner's rule and apply mod early. For exampe, h(APPLE) is

$$\left(\left(\left(\left(\left(\left(65R+80\right) \bmod M\right)R+80\right) \bmod M\right)R+76\right) \bmod M\right)R+69\right) \bmod M$$

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- $O(\log n)$ worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable space usage (exactly n nodes)
- Never need to rebuild the entire structure
- Supports ordered dictionary operations (successor, select, rank etc.)

Advantages of Hash Tables

- ullet O(1) operation cost (if hash-function random and load factor small)
- We can choose space-time tradeoff via load factor
- ullet Cuckoo hashing achieves O(1) worst-case for search & delete