University of Waterloo CS240 - Fall 2025 Assignment 1

Due Date: Tuesday September 16 at 5:00pm

Please follow the guidelines for submission on the course webpage.

https://student.cs.uwaterloo.ca/~cs240/f25/assignments.phtml#guidelines

Each question must be submitted individually to Crowdmark. Submit early and often.

Grace period: submissions made before 7:59PM on September 16 will be accepted without penalty. Your last submission will be graded. Please note that submissions made after 7:59PM will not be graded and may only be reviewed for feedback.

All logs are base 2. There are 63 marks available; the assignment will be marked out of 60.

Problem 1 [3+3+3+3+3=15 marks]

Provide a complete proof of the following statements from first principles (i.e., using the original definitions of order notation).

a)
$$12n^3 + 11n^2 + 10 \in O(n^3)$$

d)
$$1000n \in o(n \log n)$$

b)
$$12n^3 + 11n^2 + 10 \in \Omega(n^3)$$

$$\mathbf{e)} \ n^n \in \omega(n^{20})$$

c)
$$12n^3 + 11n^2 + 10 \in \Theta(n^3)$$

Problem 2 [4+4=8 marks]

For each pair of the following functions, fill in the correct asymptotic notation among Θ , o, and ω in the statement $f(n) \in \sqcup (g(n))$. Provide a brief justification of your answers. In your justification you may use any relationship or technique that is described in class.

a)
$$f(n) = \sqrt{n}$$
 versus $g(n) = (\log n)^2$

b)
$$f(n) = n^3(5 + 2\cos 2n)$$
 versus $g(n) = 4n^3 + 3n^2 + 5n$

Problem 3 [6+6=12 marks]

Prove or disprove each of the following statements. To prove a statement, you should provide a formal proof that is based on the definitions of the order notations. To disprove a statement, you can either provide a counter example and explain it or provide a formal proof. All functions are positive functions.

- a) $f(n) \notin o(g(n))$ and $f(n) \notin \omega(g(n)) \Rightarrow f(n) \in \Theta(g(n))$
- **b)** $\min(f(n), g(n)) \in \Theta\left(\frac{f(n)g(n)}{f(n)+g(n)}\right)$

Problem 4 [6 marks]

Suppose n is a power of two and θ is a parameter in the range $2 \le \theta \le 3$. Derive an exact closed form for the sum

$$f(n) := \sum_{i=0}^{\log_2 n} 4^i \left(\frac{n}{2^i}\right)^{\theta}$$

in terms of n and θ . Hints: Re-write the formula as a geometric series. Treat $\theta = 2$ as a special case.

Problem 5 [2+2+4+4=12 marks]

Consider the following procedure.

```
pre: n is a positive integer
pre: v[1..n] is a binary vector of length n,
     i.e., each entry is either 0 or 1
foo(v,n)
     i := 1;
1.
2.
     while i \le n and v[i] = 0 do
3
         i := i+1
4
     od;
5.
     for j from 1 to i do
         print("Hello world!")
6.
7.
     od;
```

- a) How many possible input vectors are there are of size n?
- b) What is the worst case number of calls to print? Give an exact formula in terms of n and justify your answer by giving an example of a worst case input of size n. Note: This is standard pseudo-code, so the for-loop is inclusive of i. E.g., if i = 1 then the loop executes once.
- c) For $i \in \{1, 2, ..., n\}$, let S_i denote the subset of inputs of size n for which the number of calls to print is i. Describe what an element of S_i looks like, and derive an expression for $|S_i|$, the number of elements of S_i .
- d) What is the average case number of calls to print? Derive an exact closed form formula in terms of n.

Problem 6 [5 marks]

Prove that the following code fragment will always terminate.

```
s := 3*n // n is an integer
while (s>0)
  if (s is even)
    s := floor(s/4)
  else
    s := 2*s
```

Problem 7 [5 marks]

Analyze the following piece of pseudo-code and give a Θ bound on the running time as a function of n. Show your work. A formal proof is not required, but you should justify your answer.

```
1. mystery \leftarrow 0

2. \mathbf{for}\ i \leftarrow 1\ \mathbf{to}\ 3n\ \mathbf{do}

3. mystery \leftarrow mystery \times 4

4. \mathbf{for}\ j \leftarrow 1388\ \mathbf{to}\ 2010\ \mathbf{do}

5. \mathbf{for}\ k \leftarrow 4i\ \mathbf{to}\ 6i\ \mathbf{do}

6. mystery \leftarrow mystery + k
```