CS 240 - Data Structures and Data Management

Module 4: Dictionaries

Arne Storjohann

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2025

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

Outline

- 4 Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

ADT Dictionary (review)

Dictionary: An ADT consisting of a collection of items, each of which contains

- a key
- some data (the "value")

and is called a *key-value pair* (KVP). Keys can be compared and are (typically) unique.

Operations:

- search(k) (also called lookup(k))
- insert(k, v)
- delete(k) (also called remove(k)))
- optional: successor, join, is-empty, size, etc.

Examples: symbol table, license plate database

Elementary Realizations (review)

Common assumptions:

- Dictionary has n KVPs
- Each KVP uses constant space (if not, the "value" could be a pointer)
- Keys can be compared in constant time

Unordered array or linked list

```
search \Theta(n)
insert \Theta(1) (except array occasionally needs to resize)
delete \Theta(n) (need to search)
```

Ordered array

```
search \Theta(\log n) (via binary search) insert \Theta(n) delete \Theta(n)
```

Binary Search (review)

0 6 30 70 90 100 140

Only applies to a sorted array:

binary-search(A, n, k)

A: Sorted array of size n, k: key

- 1. $\ell \leftarrow 0$. $r \leftarrow n-1$
- 2. while $(\ell < r)$
- 3. $m \leftarrow \lfloor \frac{\ell+r}{2} \rfloor$
- 4. **if** (A[m] equals k) **then return** "found at A[m]" 5. **else if** (A[m] < k) **then** $\ell \leftarrow m + 1$
- 6. else $r \leftarrow m-1$
- **return** "not found, but would be between $A[\ell-1]$ and $A[\ell]$ "

We will return to binary search (and sometimes improve it!) later.

Outline

- 4 Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

Binary Search Trees (review)

Structure Binary tree: all nodes have two (possibly empty) subtrees
Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T.left is less than the root key. Every key k in T.right is greater than the root key.

In our examples we only show the keys, and we show them directly in the node. A more accurate picture would be (\bullet) when (key = 15, other info)

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::search(k) Start at root, compare k to current node's key. Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::insert(24, v)

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor node and then delete that node.

(Successor: next-smallest among all keys in the dictionary.)

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor node and then delete that node.

(Successor: next-smallest among all keys in the dictionary.)

- First search for the node x that contains the key.
- If x is a **leaf** (both subtrees are empty), delete it.
- If x has one non-empty subtree, move child up
- Else, swap key at x with key at successor node and then delete that node.

(Successor: next-smallest among all keys in the dictionary.)

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are inserted one-at-a-time, how big is *h*?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $h \ge \log(n+1) 1$ (Layer i has at most 2^i nodes. So $n \le \sum_{i=0}^h 2^i = 2^{h+1} 1$).

Height of a BST

BST::search, BST::insert, BST::delete all have cost $\Theta(h)$, where h = height of the tree = max. path length from root to leaf

If *n* items are inserted one-at-a-time, how big is *h*?

- Worst-case: $n-1 = \Theta(n)$
- Best-case: $\Theta(\log n)$. Any binary tree with n nodes has height $h \geq \log(n+1) 1$ (Layer i has at most 2^i nodes. So $n \leq \sum_{i=0}^h 2^i = 2^{h+1} 1$).

Goal: Create subclasses of BSTs where the height is always good.

- Impose a structural property.
- Argue that the property implies logarithmic height.
- Discuss how to maintain the property during operatons.

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

```
balance(v) := height(R) - height(L) must be in \{-1, 0, 1\}

balance(v) = -1 means v is left-heavy

balance(v) = +1 means v is right-heavy
```

AVL Trees

Introduced by Adel'son-Vel'skiĭ and Landis in 1962, an **AVL Tree** is a BST with an additional **height-balance property** at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node v has left subtree L and right subtree R, then

balance(
$$v$$
) := $height(R) - height(L)$ must be in $\{-1, 0, 1\}$
 $balance(v) = -1$ means v is $left$ -heavy
 $balance(v) = +1$ means v is $right$ -heavy

ullet Need to store at each node v the height of the subtree rooted at it

(There are ways to implement AVL-trees where we only store balance(v), so fewer bits. But the code gets more complicated (no details).

AVL tree example

(The lower numbers indicate the height of the subtree.)

AVL tree example

Alternative: store balance (instead of height) at each node.

Height of an AVL tree

Theorem: An AVL tree on n nodes has $\Theta(\log n)$ height.

 \Rightarrow search, BST::insert, BST::delete all cost $\Theta(\log n)$ in the worst case!

Proof:

- Define N(h) to be the *least* number of nodes in a height-h AVL tree.
- What is a recurrence relation for N(h)?
- What does this recurrence relation resolve to?

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

AVL insertion

To perform AVL::insert(k, v):

- First, insert (k, v) with the usual BST insertion.
- ullet We assume that this returns the new leaf z where the key was stored.
- Then, move up the tree from z.

```
(We assume for this that we have parent-links. This can be avoided if BST::insert returns the full path to z.
```

Update height (easy to do in constant time):

```
setHeightFromSubtrees(u) \ 1. \quad u.height \leftarrow 1 + \max\{u.left.height, u.right.height\}
```

• If the height difference becomes ± 2 at node z, then z is **unbalanced**. Must re-structure the tree to rebalance.

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

Changing structure without changing order

Note: There are many different BSTs with the same keys.

Goal: Change the *structure* locally nodes without changing the *order*.

Longterm goal: Restructure such the subtree becomes balanced.

Right Rotation

This is a **right rotation** on node *z*:

rotate-right(z)

- 1. $c \leftarrow z.left$, $z.left \stackrel{p}{\leftarrow} c.right$, $c.right \stackrel{p}{\leftarrow} z$
- $2. \quad \textit{setHeightFromSubtrees}(\textit{\textbf{z}}), \ \textit{setHeightFromSubtrees}(\textit{\textbf{c}})$
- 3. return c // returns new root of subtree

(Notation $\stackrel{\rho}{\leftarrow}$ means 'also change parent-reference of right-hand-side')

Why do we call this a rotation?

Why do we call this a rotation?

Why do we call this a rotation?

Left Rotation

Symmetrically, this is a **left rotation** on node *z*:

Again, only two links need to be changed and two heights updated. Useful to fix right-right imbalance.

Double Right Rotation

This is a **double right rotation** on node *z*:

First, a left rotation at c.

Double Right Rotation

This is a **double right rotation** on node *z*:

First, a left rotation at c. Second, a right rotation at z.

Double Left Rotation

Symmetrically, there is a **double left rotation** on node z:

First, a right rotation at c. Second, a left rotation at z.

Outline

- Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

AVL Insertion Example revisited

AVL insertion revisited

- Imbalance at z: do (single or double) rotation
- Choose c as child where subtree has bigger height.

```
AVL::insert(k, v)
 1. z \leftarrow BST::insert(k, v) // leaf where k is now stored
    while (z is not NULL)
3
         if (|z.left.height - z.right.height| > 1) then
              Let c be taller child of z
4
              Let g be taller child of c (so grandchild of z)
5.
              restructure(g, c, z) // see later
6
7.
              break
                             // can argue that we are done
8.
        setHeightFromSubtrees(z)
9.
         z \leftarrow z.parent
```

Can argue: For insertion one rotation restores all heights of subtrees.

⇒ No further imbalances, can stop checking.

Fixing a slightly-unbalanced AVL tree

```
restructure(g, c, z)
node g is child of c which is child of z
 1. p \leftarrow z.parent
                           // save for later
                             // Right rotation
                              u \leftarrow rotate-right(z)
                            : // Double-right rotation
                           z.left \stackrel{p}{\leftarrow} rotate-left(c)
                           u \leftarrow rotate-right(z)
                            : // Double-left rotation
                           z.right \stackrel{p}{\leftarrow} rotate-right(c)
                              u \leftarrow rotate-left(z)
                            :// Left rotation
                              u \leftarrow rotate-left(z)
     make u the appropriate child of p and return u
```

Rule: The middle key of g, c, z becomes the new root.

AVL Insertion Example revisited

AVL Insertion Example revisited

Outline

- 4 Dictionaries and Balanced Search Trees
 - ADT Dictionary
 - Binary Search Trees
 - AVL Trees
 - Insertion in AVL Trees
 - Restructuring a BST: Rotations
 - AVL insertion revisited
 - Deletion in AVL Trees

AVL Deletion

Remove the key *k* with *BST::delete*.

Find node where *structural* change happened.

(This is not necessarily near the node that had k.)

Go back up to root, update heights, and rotate if needed.

```
AVL::delete(k)
1. z \leftarrow BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
    while (z is not NULL)
         if (|z.left.height - z.right.height| > 1) then
4.
              Let c be taller child of z
5.
6.
              Let g be taller child of c (break ties to avoid double rotation)
7.
             z \leftarrow restructure(g, c, z)
8. // Always continue up the path
9.
        setHeightFromSubtrees(z)
10.
         z \leftarrow z.parent
```

Example: AVL::delete(22)

Example: AVL::delete(22)

A single *restructure* is not enough to restore all balances.

Example: AVL::delete(22) (cont'd)

Important: Ties *must* be broken to avoid double rotation. Consider again the above example. If we applied double-rotation:

Important: Ties *must* be broken to avoid double rotation. Consider again the above example. If we applied double-rotation:

AVL Tree Summary

search: Just like in BSTs, costs $\Theta(height)$

insert: BST::insert, then check & update along path to new leaf

- total cost $\Theta(height)$
- restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node

- total cost $\Theta(height)$
- restructure may be called $\Theta(height)$ times.

Worst-case cost for all operations is $\Theta(height) = \Theta(\log n)$.

- In practice, the constant is quite large.
- ullet Other realizations of ADT Dictionary are better in practice (o later)