CS 240: Data Structures and Data Management Fall 2025

Midterm Practice Problem

Note: This is a sample of problems designed to help prepare for the midterm exam. These
problems do not encompass the entire coverage of the exam, and should not be used as a
reference for its content.

1. True or False

(a) The midterm for this course is on October 9th at 4:30pm to 6:20pm.
(b) If Ty (n) € Q(f(n)) and Ty(n) € O(g(n)), then 7-4 € QL)
)

Ty
T (n g(n)

If limy, 00 % = ¢*2, then f(n) € O(g(n))

If f(n) € ©(g(n)), then lim,_, % =L where 0 < L < o0

All heaps satisfy AVL tree’s height-balance requirement

(c
(d)
()
(f) A binary search tree with n leaves must have height in O(n)
(&)
(h)

(i) It is possible for a sorting algorithm to have a runtime in o(nlogn) on an input of size n

The runtime for insert and delete in heaps is always ©(logn)

The average-case and expected-case run-time of an algorithm must always be the same

2. Order Notation and Recurrence Relation

(a) Show that 3n? — 8n + 2 € ©(n?) from first principles.
(

)
b) Prove from first principle that 14n + 22 is o(nlogn)
(¢) Prove from first principle that n € w(2\/m)
)
)

(d) Given T'(1) = 1, resolve T'(n) = T((22) + n by providing a © bound.
(e) Disprove the following statement - if f(n) € o(nlogn), then f(n) € O(n)

3. Pseudo-code Analysis
Analyze following pieces of pseudo-code and give a tight bound on the running time as a function of n.

(a) Analyze the following piece of pseudo-code and give a tight (©) bound on the running time as a
function of n.

i=2
x=0
while (i < n):
for j =1 to n:
for k = 1 to j:
x=x+1
i=1=*1



MT Practice Problem

(b) Give a tight big-O bound for the expected runtime of the following algorithm.

ArrayAlg(A, n, k)
// n = A.size()
// A is a permutation of [0, ..., n-1]
// k is in the set {0, ..., n-1}
i = random(n)
if A[i] == k then
return i
for j = 0 to n-1
print("a")
return ArrayAlg(A, n, k)

(¢) Let A and B be two bit-strings of length n (modelled here as arrays where each entry is 0 or 1).
A string-compare tests whether A is smaller, larger, or the same as B and works as follows:

str-cmp(A, B, n)
for i = 0; i < n: i++ do
if (A[i] < B[i]) then return "A is smaller"
if (A[i] > B[i]) then return "A is bigger"
return "They are equal"

Show that the average-case run-time of str-cmp is in O(1). You may use without proof that

Yizo 3 € O(1).

(d) Give the best-case and expected running time for the following function. You can assume that

the Shuffle operation requires O(n) time and the array A contains no duplicates
Note: the Shuffle() function produces each permutation equally likely.

MonkeySort (A):
// Input: Array A of size n
// Output: None (A is sorted in-place)
shuffle(A)
if A is sorted then
return A
else do
MonkeySort (A)

4. Heap Operations
Insert 9 into the following max-heap and then delete-max




MT Practice Problem 3

10.

11.

Heap Merging
Describe an algorithm for merging 2 binary heaps. That is, given 2 heaps A and B, return a new heap
C containing all of the elements of A and B.

Priority-Queue
Given a family k sorted arrays Ay, ..., Ag, where the combination of the k arrays has n elements, give
an O(nlogk) time algorithm that produces a single sorted array containing all n elements. Hint: use
a priority queue.

Basics of AVL Tree
Consider following AVL tree.

(a) Fill out height factor of each node. For example, node 33 will have height factor of 2.
(b) Fill out balance factor of each node. For example, node 33 will have height factor of 1.

Lower bound finding

Michael thinks he has discovered a new realization of priority-queues, which is comparison based and
performs insert and delete-max in O(loglogn) time. Explain why this realization cannot be correct.
Hint: do not tackle by talking about his implementation of priority queue.

Epsilon
Let 0 < € < 1. Suppose that we have an array A of n items such that the first n —n¢ items are sorted.
Describe an O(n) time algorithm to sort A.

Radix Sort
Perform MSD and LSD on the following array of decimal integers using R = 2:

A =[100,64,127,1,17,18, 67]

Numbers in Range

We have an array A of n non-negative integers such that each integer is less than k. Give an O(n + k)
time preprocessing algorithm such that queries of the form “how many integers are there in A that
are in the range [a,b]?” can be answered in O(1) time. Note that a and b are not fixed; they are
parameters given to the query algorithm.



