University of Waterloo

CS240 Spring 2022
Assignment 2
Due Date: Wednesday, June 1 at 5:00pm

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration before you start working on the assessment and submit it
before the deadline of June 1 along with your answers to the assignment; i.e. read, sign
and submit A02-AID.txt now or as soon as possible. The agreement will indicate
what you must do to ensure the integrity of your grade. If you are having difficulties with
the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time or
the assessment will not be marked.

Pleaseread https://student.cs.uwaterloo.ca/~cs240/s22/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
MarkUs as a PDF with the corresponding file names: a2ql.pdf, a2q2.pdf, a2q3.pdf,
a2qd.pdf . It is a good idea to submit questions as you go so you aren’t trying to cre-

ate several PDF files at the last minute.

Late Policy: Assignments are due at 5:00pm on Wednesday. Students are allowed to
submit one late assignment, 2 days after the due date on Friday by 5:00pm. Assignments
submitted after Friday at 5:00pm or Wednesday at 5:00pm (if you have already used your
one late submission) will not be accepted for grading but may be reviewed (by request) for
feedback purposes only. If you want to use your one time late assignment allowance, please
send an email to “cs240@uwaterloo.ca” with the title “Using one time late assignment al-
lowance”.

Question 1 [4 marks]

Suppose we are working with a heap, represented as an array, and we want to remove an
element from it that is not necessarily the root. We are given the index of this element in
the array. Describe an algorithm that performs this task and analyse its complexity (since
we did not prove correctness of fix-up/fix-down in class, we do not require you to prove
correctness).

https://student.cs.uwaterloo.ca/~cs240/s22/assignments.phtml#guidelines

Question 2 [8 marks]

We want to prove the following: there is no comparison-based algorithm that can merge m
sorted arrays of length m into a unique sorted array of length m? doing O(m?) comparisons.
We argue by contradiction, and we assume that it is possible, so that we have such an
algorithm (which we call FastMerge).

Modify MergeSort in order to use FastMerge, and derive a contradiction. You may
use the following property: if a function T'(n) satisfies T'(n) = /nT(y/n) + O(n), then
T(n) = O(nlog(log(n))). Do not worry about n being a perfect square or not.

Question 3 [8 marks]

Given an array A[0...n — 1] of numbers, show that if A[i] > A[i — j] for all j > log(n), the
array can be sorted in O(nlog(log(n))) time.

Hint: Partition A into contiguous blocks of size log(n); i.e. the first log(n) elements are in
the first block, the next log(n) elements are in the second block, and so on. Then, establish
a connection between the elements within two blocks that are separated by another block.

Question 4 [34344 marks]|

The median of a sequence (ay,...,a,) of integers is defined as follows: assume we sort
these integers, and write them as (af, ..., al,) once sorted. Then their median is a’[n /21~ For
instance:

e if n =1, the median of (2) is 2

e if n =2, the median of (5,1) is 1

e if n = 3, the median of (2,10,1) is 2

e if n =4, the median of (5,5,2,1) is 2, etc

Even though we sort the sequence to define the median, it is possible to avoid using any
sorting algorithm to compute it: for instance, quickselect finds the median of a sequence of
length n in average time O(n).

In this problem, we study an online algorithm for finding the median of a sequence: we
suppose that we receive the entries of the sequence one at a time, and we want to print the
medians of all these partial sequences as we go. For instance:

e suppose we first receive 15. We print 15, which is the median of the sequence (15)
e next, we receive 10. We print 10, which is the median of the sequence (15, 10)
e next, we receive 1. We print 10, which is the median of the sequence (15,10, 1)

e next, we receive 20. We print 10, which is the median of the sequence (15,10, 1, 20)

e next, we receive 30. We print 15, which is the median of the sequence (15, 10, 1, 20, 30)

Re-computing the median from scratch every time would be too slow. Here is an idea
for a better algorithm: use two heaps Hj, and Hy;, each of which will roughly contain half of
the elements seen so far: if we have seen n elements, H), should contain the [n/2] smallest
elements, Hy; should contain the |n/2| largest ones.

(a)

(b)

On the example (15,10, ...) above, show us what these heaps would contain at each
of the 5 steps (we don’t know if these are min-heaps or max-heaps yet, so just tell us
what elements they contain).

We would like to be able to read off the (current) median using just one access to H,.
What kind of heap should it be, a min-heap or a max-heap? How long does finding
the current median take?

Describe how to update the two heaps when inserting the next element. In particular,
in which heap do you insert the element, and how do you ensure that Hy, and Hy; have
the required size afterwards? Give the runtime of your update method, with a short
justification; it should be o(n). (At this stage, you will have to explain whether Hy;
should be a min-heap or a max-heap.)

	[4 marks]
	[8 marks]
	[8 marks]
	[3+3+4 marks]

