
University of Waterloo

CS240 Spring 2022

Assignment 3 Post-Mortem

This document goes over common errors and general student performance on the assign-
ment questions. We put this together using feedback from the graders once they are done
marking. It is meant to be used as a resource to understand what we look for while marking,
as well as some common areas that students can improve in.

Question 1 [5 Marks]

• Some students did not show sufficient justification for their final running times. In par-
ticular, some steps were skipped and/or some claims were introduced without enough
explanation.

• Some students did not write the correct expression for the permutations of the array
which would lead to (at least) k comparisons.

• Some students used the uniform distribution over pairwise sortedness instead of the
uniform distribution over permutations without justification.

• A few students forgot to multiply the number of comparisons with the number of
instances which would lead to those comparisons in their summation.

• A few students found the expected running time of the algorithm instead of the average
case. Since HalfSort is not a randomized algorithm, its expected running time is not
defined.

Question 2 [2+2+4=8 Marks]

• Most students did parts (a) and (b) very well.

• Many students did not attempt part (c) at all.

• For part (c), many students wrote that the array size decreases by 2; it actually de-
creases by 1 at each recursive call. (A.size − 2 = n − 2 = (n − 1) − 1 where n − 1 is
the maximum index in the original array.)

• For part (c), some students derived the incorrect recurrence relation – recurrence re-
lations are generally of the format specified in the course slides and the assignment
solutions (writing a recurrence relation in terms of a single instance or using T exp are
both valid)

1



• For part (c), a few students did not fully explain the difference between the expected
runtime of a single instance (i.e. T (A, 〈x,R′〉)) versus the expected runtime for all
instances of a certain size (i.e. T exp(n)). This difference is highlighted in both the
course notes and course slides, so students are encouraged to review the definition of
expected runtime.

• For part (c), a few students found the average running time of the algorithm instead
of the expected running time.

• In general, many submitted proofs were too informal and/or skipped a few steps. When
answering these types of questions, it doesn’t hurt to include as many steps as you feel
are necessary – this helps the graders better assess your knowledge of the material.

Question 3 [0+3+3+3=9 Marks]

• For parts (b) and (d), some students forgot to include balance factors in their AVL
trees.

• For part (c), some students did not elaborate enough on how their idea would work
on a set of numbers to insert into the tree (for instance, using QuickSelect to get the
median of an array) and instead proposed an idea for inserting elements into an AVL
tree from an existing AVL tree.

• For part (d), many students swapped the deleted node with the in-order predecessor,
instead of the in-order successor. Students are advised to read the question very
carefully to avoid losing marks over small mistakes.

• Overall, this question was done quite well.

Question 4 [10 Marks]

• Some solutions only considered the base case (where the height difference between the
trees is 1) – the same approach may not work for height differences greater than 1.

• Quite a few solutions involved simply attaching T2 to T1 (or vice versa) and performing
rotations until the resulting tree is balanced. While this approach could produce a valid
AVL tree, the number of rotations required would be in O(log2 n), which exceeds the
allowed O(log n) runtime.

• Some solutions involved attaching a subtree of T1 of height h2 or h2 + 1 (where h2 is
the height of T2) as a left child of the smallest node of T2, with T2 (minus the smallest
node) as the right child. This approach may leave out many elements of T1 since only
one of its subtrees is added to the final tree.

2



• Some answers were missing justification of correctness and/or running time. As stated
in the assignment guidelines section of the course webpage, questions that ask to give
an algorithm or data structure require a description of the main idea, all the details of
the algorithm, and justifications of correctness (i.e. why the algorithm produces the
correct answer for all valid inputs) and running time.

Question 5 [0+3+3+3+3=12 Marks]

• For part (b), some submitted skip lists either had a tower that did not have the correct
height or were missing the topmost sentinel-only level.

• Some students forgot to include the final equality comparison that is present in search()
in part (b). No marks were deducted this time.

• For part (b), some students forgot to include the skip list after insertion and only
included the table with the number of comparisons required for searching each key in
their answer.

• For part (b), a few answers for the number of comparisons used ≤ comparisons instead
of strict < comparisons. In a skip list, we cannot reach the node we are searching
for unless we are in the lowest level (S0). Students are encouraged to step through
the pseudocode in the course slides with some examples to better understand how
searching in a skip list works.

• For part (d), many students forgot to account for the sentinel nodes in their proof.

• For part (d), some students forgot to start their summation from 1 instead of 0. Since
the question asked about the expected number of extra nodes, the nodes at level S0

should not be considered.

• For part (d), some stduents forgot that the probability of adding a level to a tower is
p instead of 1

2
.

• Although many students did not attempt part (e), most submitted proofs were done
quite well.

3


	[5 Marks]
	[2+2+4=8 Marks]
	[0+3+3+3=9 Marks]
	[10 Marks]
	[0+3+3+3+3=12 Marks]

