Assignment 1 Post-Mortem

- Question 1 No common error for a, b.
 - For c:
 - Some students treat log as ln or log_{10} .
 - A few students reduce $2^{2^{1/c}}$ to $4^{1/c}$.
 - For d, some student just stated such n_0 exists, not explicitly stated the value.

Question 2 • No common error for a, b, c.

- Some students use plot as a proof, which is not efficient.
- For d, some students were unable to show that Ω applied and concluded that none of the symbols are applicable as the limit DNE. Several students who did prove Ω applied did not show why one of the other symbols could not apply.
- Question 3 For a, some students proved the statement to be true.
 - For b, Providing counterexamples where f(n) / g(n) = 1/n, which in fact is O(1).
 - Nothing specific for c.

Question 4 • nothing specific for a.

- For b, some students directly treat $\log i = \log n$, without explanation.
- For c, some student wrote *m* increasing linearly, which is incorrect.

Question 5 • From TA_1 : In part (a), students provided examples that did not adhere to the upper bounds in the question, and at times, provided examples in which $T_2(n) > T_1(n)$ for $n \ge n_0$.

- From TA_2 : In part (a), Some students provided incorrect counterexamples, such as setting $T_1(n) = n^3$, which does not satisfy the given condition $T_1(n) \in O(n^2 \log^5 n)$.
- From TA_1 : In part (b), students often forgot to include 2 separate constants (n1 and n2) while using the definitions of Big-theta for $T_1(n)$ and $T_2(n)$ at times, they forgot to write for all n $n \ge n1$ eq1 and $n \ge n2$ in eq2. In some situations, students started off with big-theta definitions but then resorted to using the limit rule.
- From TA_2 : In part (b), many students, when determining n_0 , neglected the n_1 and n_2 from the definitions of Big-Theta for $T_1(n)$ and $T_2(n)$. Some did not use the definition at all in their proof.