
University of Waterloo

CS240 - Spring 2025

Assignment 2

Due Date: Tuesday June 3, 5pm

Please read the following link for guidelines on submission:

https://student.cs.uwaterloo.ca/~cs240/assignments.phtml#guidelines

Late Policy: Assignments are due at 5:00pm, with a grace period until 8:00pm.

Question 1 [5 marks]

Suppose we are working with a max heap, represented as an array, and we want to remove
an element from it that is not necessarily the root. We are given the index i of this element
in the array. Describe an algorithm that performs this task, give the pseudo-code, analyse
its worst-case complexity in terms of the number n of elements in the heap (give a big-O),
and briefly justify correctness (you can take for granted that the algorithms for insert and
delete in a heap are correct without reproving them, of course). Note: if your algorithm runs
in time Ω(n) in the worst case, you will not receive full marks.

Question 2 [1+3+4+5 marks]

We want to implement a double-ended priority queue. This is a collection where we can
insert elements, access the minimum or maximum and remove the minimum or maximum;
our goal is do to insert, delete-min, delete-max in time O(log(n)) (if there are n elements in
the collection) and find-min, find-max in constant time.

To support these requirements, we use two heaps H1 (a min-heap) and H2 (a max-heap)
stored as arrays. At all times, these heaps should contain the same set of elements, but stored
in a different order. You should also use two arrays T1 and T2 that specify the correspondence
between the elements of H1 and H2: T1[i] gives the index of H1[i] in H2, and conversely T2[i]
gives the index of H2[i] in H1.

(a) Explain how to implement find-min and find-max, and justify the runtime.

(b) Give an algorithm to update the arrays T1 and T2 if we swap the elements of indices i
and j in H1 (we do not worry whether swapping these two elements breaks the heap
condition in H1). Give (and justify) the cost of this operation, and a brief justification
of its correctness.

(c) Give an algorithm to insert a new key in the data structure. Give (and justify) the
cost of this operation, and a brief justification of correctness. Big-Os are sufficient.

(d) Give algorithms to do delete-min and delete-max. Give (and justify) the cost of these
operations, and a brief justification of correctness. Big-Os are sufficient.

1

https://student.cs.uwaterloo.ca/~cs240/assignments.phtml#guidelines

Question 3 [4+2 = 6 marks, plus 6 bonus marks]

We are going to analyse a recursive algorithm for selection (Call it r-quick-select). On
input a size n array A[0..n− 1] of distinct integers entries and k in {0, . . . , n− 1}, we want
to return what would be the entry A[k] if A was sorted in increasing order.

The algorithm proceeds as follows: if n = 1, we are done. Else, we call choose pivot(A)
= r-quick-select(A[0..2M],M). This means that we do a recursive call with inputs
A[0..2M] andM , forM = M(n) a given function of n that takes values in {0, . . . , ⌊(n−2)/2⌋}
(note: with 0 ≤ M ≤ ⌊(n − 2)/2⌋, we always have 0 ≤ 2M ≤ n − 2). The result of this
recursive call is a value v (choose pivot(A)), and we use v as pivot-value to partition A.
Then, if needed, do a second recursive call as in the algorithm on the left/right part of A.
For function M(n), you can assume the time is constant.

(a) Assume that the function M(n) has been chosen, and let T (n) be the worst-case
runtime of this algorithm, for all possible inputs A of size n (with distinct entries) and
all possible values of k. Prove that T (n) ≤ T (2M(n) + 1) + T (n−M(n)− 1) + cn, for
some constant c. You can assume that T (n) is non-decreasing.

(b) For this question and the next one, use sloppy recurrences. Find the value of M(n) (as
a function of n) that balances the two terms in the right-hand side of the recurrence,
and write the (sloppy) recurrence for this choice of M(n).

(c) (bonus) Solve the recurrence you got to find a big-O estimate for T (n). Being sloppy is
OK, but you can’t use results on the analysis of algorithms that have not been proved
in class.

Question 4 [3+2+2+4 = 11 marks]

Let A be an array of n distinct integers. An inversion is a pair of indices (i, j) such that
i < j and A[i] > A[j].

(a) Determine the maximum number and minimum number of inversions in an array of n
distinct integers. Explain what the arrays that attain these maxima and minima look
like.

(b) Given a pair of distinct indices (i, j), determine the number of permutations for which
(i, j) is an inversion (do not just give the number; we want a justification).

(c) Determine the average number of inversions in an array of n distinct integers. The
average is computed over all n! permutations of the n integers in A. Hint: indicator
variables indexed by i, j.

(d) Give the average runtime of insertion sort (as a Theta bound), assuming that in size
n you run it over possible permutations of 1, . . . , n.

2

Question 5 [6 marks]

Consider the following algorithm, where random(2) returns either 0 or 1, both with proba-
bility 1/2. What is the (worst case) expected number of lines that this algorithm prints in
total? (assume each print statement at step 5 uses exactly one line) Give a Θ() expression
(if you end up with a recurrence relation, you can use the sloppy version).

algo(A)
A[1..n]: array of size n
1. if n = 0 then
2. return
3. end if
4. for i from 1 to n do
5. print A[i]
6. end for
7. r = random(2)
8. if r = 0 then
9. algo(A[1..⌊n/2⌋])
10. algo(A[1..⌊n/2⌋])
11. else
12. algo(A)
13. end if

3

	[5 marks]
	[1+3+4+5 marks]
	[4+2 = 6 marks, plus 6 bonus marks]
	[3+2+2+4 = 11 marks]
	[6 marks]

