
University of Waterloo

CS240 Spring 2025

Assignment 3

Due Date: Tuesday, June 17 at 5:00pm

Read https://student.cs.uwaterloo.ca/~cs240/s25/assignments.phtml#guidelines
for guidelines on submission. Each question must be submitted individually to
Crowdmark. Submit early and often.

Grace period: submissions made before 19:59PM on June 17 will be accepted without
penalty. Your last submission will be graded. Please note that submissions made after
19:59PM will not be graded and may only be reviewed for feedback.

1. [7 marks] We want to prove the following: there is no comparison-based algorithm that
can merge m sorted arrays of length m into a unique sorted array of length m2 doing
O(m2) comparisons. We argue by contradiction, and we assume that it is possible, so
that we have such an algorithm (which we call FastMerge).

Modify MergeSort in order to use FastMerge, and derive a contradiction. The following
recurrence relation may show up: T (n) =

√
nT (

√
n) + O(n); here you can disregard

issues related to the fact that
√
n is not necessarily an integer. You can use the fact

that this gives T (n) ∈ o(n log n) without proving it.

2. [7 marks] Let A be an unsorted array of n integers in the range [0, n42]. Design an
algorithm that finds the minimum (non-negative) difference between any two numbers
in this array. For instance, if the input was [82, 32, 55, 78, 148], then the answer would
be 4, witnessed by the pair 78 and 82. Your algorithm must take O(n) time. It
is important that your solution is explicit about how you represent the data. You
may assume that the numbers are given in base n, and that computing x mod n and
computing floor are constant time operations. each number is given as a word on
memory. So, you don’t have direct access to digits of a given number.

3. [2+5+5=12 marks] It is possible to implement AVL trees such that the nodes store
only the balance factor {−1, 0, 1} at each node instead of the height of the subtree
rooted at the node.

(a) Show that the tree T in Figure 1 is an AVL tree by writing in the balance factor
in the lower half of each node.

(b) Show the process of inserting a KVP with key 29 into the tree T in Figure 1.
Specifically, draw the tree, with balance factors, after each call to restructure.

1

https://student.cs.uwaterloo.ca/~cs240/s25/assignments.phtml#guidelines


55

46

13

7 42

17 45

49

51

82

59 92

89

Figure 1: Binary tree T of problem 1

(c) Show the process of deleting key 49 from the original tree T in Figure 1. Specifi-
cally, draw the tree, with balance factors, after each call to restructure.

4. [2+6+5=13 marks]

Consider an AVL tree T with n nodes, and let v be a leaf in T . We want to give a
lower bound on the depth ℓ of v, that is, the length of the path from the root of T to
v.

(a) Let v0, . . . , vℓ be the path from the root of T to v (where v0 is the root of T and
vℓ = v), and let T0, . . . , Tℓ be the subtrees of T rooted at respectively v0, . . . , vℓ.
What is T0 and what is Tℓ?

(b) Prove by induction that for i = 0, . . . , ℓ, Tℓ−i has height at most 2i.

(c) Using the previous question, deduce a lower bound of the form ℓ ∈ Ω(g(n)), for a
certain function g(n).

5. [6 marks] Describe an algorithm for computing the height of a given AVL tree (where
nodes store the balance factor {−1, 0, 1} instead of height) in O(log n) time on an AVL
tree of size n. In the pseudocode, use the following terminology: T.left, T.right, and
T.parent indicate the left child, right child, and parent of a node T and T.balance indi-
cates its balance factor (-1, 0, or 1). For example if T is the root we have T.parent=nil
and if T is a leaf we have T.left and T.right equal to nil. The input is the root of the
AVL tree. Justify correctness of the algorithm and provide a brief justification of the
runtime.

2


