CS 240 - Data Structures and Data Management

Module 1: Introduction and Asymptotic Analysis

Armin Jamshidpey, Éric Schost Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2025

Outline

- Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

Outline

- Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

Course objectives: What is this course about?

- Much of Computer Science is *problem solving*: Write a program that converts the given input to the expected output.
- When first learning to program, we emphasize *correctness*: does your program output the expected results?
- Starting with this course, we will also be concerned with efficiency: is your program using the computer's resources (typically processor time) efficiently?
- We will study efficient methods of *storing*, *accessing*, and *organizing* large collections of data.
 - **Motivating examples:** Digital Music Collection, English Dictionary Typical operations include: *inserting* new data items, *deleting* data items, *searching* for specific data items, *sorting*.

Course objectives: What is this course about?

- We will consider various abstract data types (ADTs) and how to realize them efficiently using appropriate data structures.
- We will some problems in data management (sorting, pattern matching, compression) and how to solve them with efficient algorithms.
- Main objective: efficiency. We may briefly discuss naive solutions, but the main focus is on fast algorithms.
- There is a strong emphasis on mathematical analysis in the course.
- Algorithms are presented using pseudo-code and analyzed using order notation (big-Oh, etc.).

Course topics

- 1 background, big-Oh analysis
- priority queues and heaps
- efficient sorting, selection
- binary search trees, AVL trees
- skip lists
- tries
- hashing
- quadtrees, kd-trees, range search
- string matching
- data compression
- external memory
- $1 \text{ module} \approx 1 \text{ week per topic.}$

Required CS background

Topics covered in previous courses:

- arrays, linked lists
- strings
- stacks, queues
- abstract data types
- recursive algorithms
- binary trees
- basic sorting
- binary search
- binary search trees

Most are briefly reviewed in course notes, or consult any textbook (e.g. [Sedgewick, CLRS]).

Useful math facts

Logarithms:

- $y = \log_b(x)$ means $b^y = x$. e.g. $n = 2^{\log n}$.
- log(x) (in this course) means $log_2(x)$
- $\log(x \cdot y) = \log(x) + \log(y)$, $\log(x^y) = y \log(x)$, $\log(x) \le x$
- $\log_b(a) = \frac{\log_c a}{\log_c b} = \frac{1}{\log_a(b)}, \ a^{\log_b c} = c^{\log_b a}$
- $\ln(x) = \text{natural log} = \log_e(x)$, $\frac{d}{dx} \ln x = \frac{1}{x}$

Factorial:

- $n! := n(n-1)(n-2)\cdots 2\cdot 1 = \#$ ways to permute n elements
- $\log(n!) = \log n + \log(n-1) + \cdots + \log 2 + \log 1 \in \Theta(n \log n)$ (We will define Θ soon.)

Probability:

- E[X] is the expected value of X.
- E[aX] = aE[X], E[X + Y] = E[X] + E[Y] (linearity of expectation)

Useful sums

Arithmetic sequence:

$$\sum_{i=0}^{n-1} i = ???$$

Geometric sequence:

$$\sum_{i=0}^{n-1} 2^i = ???$$

Harmonic sequence:

$$\sum_{i=1}^{n} \frac{1}{i} = ???$$

A few more:

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = ???$$

$$\sum_{i=1}^{n} i^k = ???$$

Useful sums

Arithmetic sequence:

$$\sum_{i=0}^{n-1} i = \frac{(n-1)n}{2} \qquad \qquad \sum_{i=0}^{n-1} (a+di) = na + \frac{dn(n-1)}{2} \in \Theta(n^2) \quad \text{if } d \neq 0.$$

Geometric sequence:

Geometric sequence:
$$\sum_{i=0}^{n-1} 2^i = 2^n - 1 \qquad \sum_{i=0}^{n-1} a \, r^i = \left\{ \begin{array}{l} a \frac{r^n - 1}{r - 1} & \in \Theta(r^n) & \text{if } r > 1 \\ na & \in \Theta(n) & \text{if } r = 1 \\ a \frac{1 - r^n}{1 - r} & \in \Theta(1) & \text{if } 0 < r < 1. \end{array} \right.$$

Harmonic sequence:

$$\sum_{i=1}^{n} \frac{1}{i} = ???$$
 $H_n := \sum_{i=1}^{n} \frac{1}{i} = \ln n + \gamma + o(1) \in \Theta(\log n)$

A few more:

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = ??? \qquad \sum_{i=1}^{n} \frac{i}{2^{i}} \in \Theta(1)$$

$$\sum_{i=1}^{n} i^{k} = ??? \qquad \sum_{i=1}^{n} i^{k} \in \Theta(n^{k+1}) \quad \text{for } k \ge 0$$

Outline

- Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

Algorithms and problems: Review

Let us clarify a few more terms:

Problem: Description of possible input and desired output. Example: Sorting problem.

Problem Instance: One possible input for the specified problem.

Algorithm: *Step-by-step process* (can be described in finite length) for carrying out a series of computations, given an arbitrary instance *I*.

Solving a problem: An Algorithm \mathcal{A} solves a problem Π if, for every instance I of Π , \mathcal{A} computes a valid output for the instance I in finite time.

Program: A program is an *implementation* of an algorithm using a specified computer language.

In this course, our emphasis is on algorithms (as opposed to programs or programming). We do not use any particular computer language to describe them.

Algorithms and programs

Pseudocode: communicate an algorithm to another person.

In contrast, a program communicates an algorithm to a computer.

```
insertion-sort(A, n)

A: array of size n

1. for (i \leftarrow 1; i < n; i++) do

2. for (j \leftarrow i; j > 0 \text{ and } A[j-1] > A[j]; j--) do

3. swap A[j] and A[j-1]
```

- sometimes uses English descriptions, e.g. 'swap',
- omits obvious details, e.g. i is usually an integer
- has limited if any error detection, e.g. A is assumed initialized
- should be precise about exit-conditions, e.g. in loops
- should use good indentation and variable-names

Algorithms and programs

From problem Π to program that solves it:

- **①** Design an algorithm $\mathcal A$ that solves $\Pi \to \mathbf{Algorithm\ Design}$ A problem Π may have several algorithms. Design many!
- ② Assess *correctness* and *efficiency* of each $\mathcal{A}. \to \mathbf{Algorithm}$ Analysis Correctness $\to \mathsf{CS245}$ (here informal arguments are enough). Efficiency \to later
- If acceptable (correct and efficient), implement algorithm(s). For each algorithm, we can have several implementations.
- If multiple acceptable algorithms/implementations, run experiments to determine best solution.

CS240 focuses on the first two steps.

The main point is to avoid implementing obviously-bad algorithms.

Outline

- 1 Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

Efficiency of algorithms

What do we mean by 'efficiency'?

- In this course, we are primarily concerned with the amount of time a program takes to run. → Running Time
- We also may be interested in the amount of additional memory the program requires.
 → Auxiliary space
- The amount of time and/or memory required by a program will usually depend on the given problem instance.
- So we express the time or memory requirements as a mathematical function of the instances (e.g. T(I))
- But then aggregate over all instances \mathcal{I}_n of size n (e.g. T(n)).
- Do we take max, min, avg? $(\rightarrow later)$

Measuring efficiency of algorithms

What do we count as running time/space usage of an algorithm?

First option: experimental studies

- Write a program implementing the algorithm.
- Run the program with inputs of varying size and composition and measure time and space.
- Plot/compare the results.

There are numerous shortcomings:

- Implementation may be complicated/costly.
- Outcomes are affected by many factors: hardware (processor, memory), software environment (OS, compiler, programming language), and human factors (programmer).
- We cannot test all instances; what are good sample inputs?

Running time of algorithms

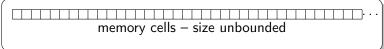
Better: theoretical analysis:

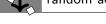
- Does not require implementing the algorithm (we work on pseudo-code).
- Is independent of the hardware/software environment (we work on an idealized computer model).
- Takes into account all input instances.

This is the approach taken in CS240.

We use experimental results only if theoretical analysis yields no useful results for deciding between multiple algorithms.

Random access machine (RAM) model





random access (equally fast to all cells)

Central processing unit (CPU)

- Each memory cell stores one (finite-length) datum, typically a number, character, or reference.
 - Assumption: cells are big enough to hold the items that we store.
- Any access to a memory location takes constant time. (We will revisit this assumption late in the course.)
- Any primitive operation takes constant time. (Add, subtract, multiply, divide, follow a reference, ...) Not primitive: \sqrt{n} , anything involving irrational numbers

These assumptions may not be valid for a "real" computer.

Running time and space

With this computer model, we can now formally define:

- The running time is the number of memory accesses plus the number of primitive operations.
- The **space** is the maximum number of memory cells ever in use.
- Size(1) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the **growth rate**: What is the behaviour of algorithms as size n gets large?

• Example 1: What is larger, 100n or $10n^2$?

Running time and space

With this computer model, we can now formally define:

- The running time is the number of memory accesses plus the number of primitive operations.
- The **space** is the maximum number of memory cells ever in use.
- Size(1) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the **growth rate**: What is the behaviour of algorithms as size n gets large?

- Example 1: What is larger, 100n or $10n^2$?
- Example 2 (Matrix multiplication, approximately): What is larger: $4n^3$, $300n^{2.807}$, or $10^{67}n^{2.373}$?

Running time and space

With this computer model, we can now formally define:

- The running time is the number of memory accesses plus the number of primitive operations.
- The **space** is the maximum number of memory cells ever in use.
- Size(1) of instance I is the number of memory cells that I occupies.

The real-life time and space is proportional to this.

We compare algorithms by considering the **growth rate**: What is the behaviour of algorithms as size n gets large?

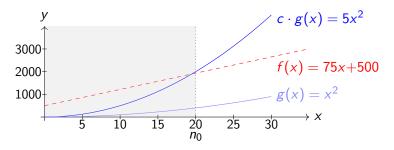
- Example 1: What is larger, 100n or $10n^2$?
- Example 2 (Matrix multiplication, approximately): What is larger: $4n^3$, $300n^{2.807}$, or $10^{67}n^{2.373}$?

To simplify comparisons, use **order notation** (big-*O* and friends). Informally: ignore constants and lower order terms

Order notation

Study relationships between functions.

Example:
$$f(x) = 75x + 500$$
 and $g(x) = x^2$ (e.g. $c = 5, n_0 = 20$)



O-notation: $f(x) \in O(g(x))$ (f is asymptotically upper-bounded by g) if there exist constants c > 0 and $n_0 \ge 0$ s.t. $|f(x)| \le c |g(x)|$ for all $x \ge n_0$.

In CS240: Parameter is usually an integer (write n rather than x). f(n), g(n) usually positive for sufficiently big n (omit absolute value signs).

Order Notation: Example 1

In order to prove that $2n^2 + 3n + 11 \in O(n^2)$ from first principles (i.e., directly from the definition), we need to find c and n_0 such that the following condition is satisfied:

$$2n^2 + 3n + 11 \le c n^2$$
 for all $n \ge n_0$.

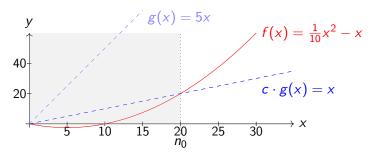
Many, but not all, choices of c and n_0 will work.

Asymptotic lower bound

- We have $2n^2 + 3n + 11 \in O(n^2)$.
- But we also have $2n^2 + 3n + 11 \in O(n^{10})$.
- We want a *tight* asymptotic bound.

Ω-notation: $f(x) \in \Omega(g(x))$ (f is asymptotically lower-bounded by g) if there exist constants c > 0 and $n_0 \ge 0$ s.t. $c |g(x)| \le |f(x)|$ for all $x \ge n_0$.

Example: $f(x) = \frac{1}{10}x^2 - x$ and g(x) = 5x (e.g. $c = \frac{1}{5}, n_0 = 20$)



Asymptotic lower bound

Example: Prove that $f(n) = 2n^2 + 3n + 11 \in \Omega(n^2)$ from first principles.

Example: Prove that $\frac{1}{2}n^2 - 5n \in \Omega(n^2)$ from first principles.

Asymptotic tight bound

 Θ -notation: $f(x) \in \Theta(g(x))$ (f is asymptotically tightly-bounded by g) if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ such that $c_1 |g(x)| \le |f(x)| \le c_2 |g(x)|$ for all $x \ge n_0$.

Equivalently: $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$

We also say that the growth rates of f and g are the same. Typically, f(x) may be "complicated" and g(x) is chosen to be a very simple function.

Example: Prove that $\log_b(n) \in \Theta(\log n)$ for all b > 1 from first principles.

Common growth rates

Commonly encountered growth rates in analysis of algorithms include the following:

- $\Theta(1)$ (constant),
- $\Theta(\log n)$ (logarithmic),
- $\Theta(n)$ (linear),
- $\Theta(n \log n)$ (linearithmic),
- $\Theta(n \log^k n)$, for some constant k (quasi-linear),
- $\Theta(n^2)$ (quadratic),
- $\Theta(n^3)$ (cubic),
- $\Theta(2^n)$ (exponential).

These are sorted in *increasing order* of growth rate.

Common growth rates

Commonly encountered growth rates in analysis of algorithms include the following:

- $\Theta(1)$ (constant),
- $\Theta(\log n)$ (*logarithmic*),
- $\Theta(n)$ (linear),
- $\Theta(n \log n)$ (linearithmic),
- $\Theta(n \log^k n)$, for some constant k (quasi-linear),
- $\Theta(n^2)$ (quadratic),
- $\Theta(n^3)$ (cubic),
- $\Theta(2^n)$ (exponential).

These are sorted in *increasing order* of growth rate.

How do we define 'increasing order of growth rate'?

- constant complexity: T(n) = c
- logarithmic complexity: $T(n) = c \log n$
- linear complexity: T(n) = cn
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n$
- quadratic complexity: $T(n) = c n^2$
- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

- constant complexity: T(n) = c $\rightsquigarrow T(2n) = c$.
- logarithmic complexity: $T(n) = c \log n$
- linear complexity: T(n) = cn
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n$
- quadratic complexity: $T(n) = c n^2$
- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

- constant complexity: T(n) = c $\rightsquigarrow T(2n) = c$.
- logarithmic complexity: $T(n) = c \log n \longrightarrow T(2n) = T(n) + c$.
- linear complexity: T(n) = cn
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n$
- quadratic complexity: $T(n) = c n^2$
- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., $n \rightarrow 2n$).

• constant complexity: T(n) = c

- $\rightsquigarrow T(2n) = c$.
- logarithmic complexity: $T(n) = c \log n$
- $\rightsquigarrow T(2n) = T(n) + c.$

• linear complexity: T(n) = cn

- $\rightsquigarrow T(2n) = 2T(n).$
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n$
- quadratic complexity: $T(n) = c n^2$
- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

- constant complexity: T(n) = c $\rightsquigarrow T(2n) = c$.
- logarithmic complexity: $T(n) = c \log n \longrightarrow T(2n) = T(n) + c$.
- linear complexity: T(n) = cn $\rightsquigarrow T(2n) = 2T(n)$.
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n \rightsquigarrow T(2n) = 2T(n) + 2cn$.
- quadratic complexity: $T(n) = c n^2$
- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., $n \rightarrow 2n$).

• constant complexity: T(n) = c

- $\rightsquigarrow T(2n) = c.$
- logarithmic complexity: $T(n) = c \log n \implies T(2n) = T(n) + c$.
- linear complexity: T(n) = cn

- \rightarrow T(2n) = 2T(n).
- linearithmic $\Theta(n \log n)$: $T(n) = c n \log n \rightsquigarrow T(2n)$
 - \rightarrow T(2n) = 2T(n) + 2cn.

• quadratic complexity: $T(n) = c n^2$

 $\rightsquigarrow T(2n) = 4T(n).$

- cubic complexity: $T(n) = cn^3$
- exponential complexity: $T(n) = c 2^n$

• constant complexity:
$$T(n) = c$$

$$\rightsquigarrow T(2n) = c.$$

• logarithmic complexity:
$$T(n) = c \log n$$

$$\rightarrow$$
 $T(2n) = T(n) + c$.

• linear complexity:
$$T(n) = cn$$

$$\rightsquigarrow T(2n) = 2T(n).$$

• linearithmic
$$\Theta(n \log n)$$
: $T(n) = c n \log n$

$$\rightsquigarrow T(2n) = 2T(n) + 2cn.$$

• quadratic complexity:
$$T(n) = c n^2$$

$$\rightsquigarrow T(2n) = 4T(n).$$

• cubic complexity:
$$T(n) = cn^3$$

$$\rightsquigarrow T(2n) = 8T(n).$$

• exponential complexity:
$$T(n) = c 2^n$$

Growth rates and running time

It is interesting to see how the running time is affected when the size of the problem instance *doubles* (i.e., $n \rightarrow 2n$).

• constant complexity:
$$T(n) = c$$
 $\rightsquigarrow T(2n) = c$.

• logarithmic complexity:
$$T(n) = c \log n \longrightarrow T(2n) = T(n) + c$$
.

• linear complexity:
$$T(n) = cn$$
 $\rightsquigarrow T(2n) = 2T(n)$.

• linearithmic
$$\Theta(n \log n)$$
: $T(n) = c n \log n \rightsquigarrow T(2n) = 2T(n) + 2cn$.

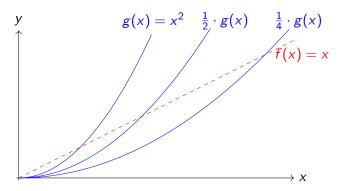
• quadratic complexity:
$$T(n) = c n^2 \longrightarrow T(2n) = 4T(n)$$
.

• cubic complexity:
$$T(n) = cn^3 \longrightarrow T(2n) = 8T(n)$$
.

• exponential complexity:
$$T(n) = c 2^n \longrightarrow T(2n) = (T(n))^2/c$$
.

Strictly smaller asymptotic bounds

- We have $f(n) = n \in \Theta(n)$.
- How to express that f(n) grows slower than n^2 ?



o-notation: $f(x) \in o(g(x))$ (f is asymptotically strictly smaller than g) if for all constants c > 0, there exists a constant $n_0 \ge 0$ such that $|f(x)| \le c |g(x)|$ for all $x \ge n_0$.

Spring 2025

Strictly smaller/larger asymptotic bounds

Example: Prove that $n \in o(n^2)$ from first principles.

Strictly smaller/larger asymptotic bounds

Example: Prove that $n \in o(n^2)$ from first principles.

- Main difference between o and O is the quantifier for c.
- n_0 will depend on c, so it is really a function $n_0(c)$.
- We also say 'the growth rate of f is *less than* the growth rate of g'.
- Rarely proved from first principles (instead use limit-rule \leadsto later).

ω-notation: $f(x) \in ω(g(x))$ (f is asymptotically strictly larger than g) if for all constants c > 0, there exists a constant $n_0 \ge 0$ such that $|f(x)| \ge c |g(x)|$ for all $x \ge n_0$.

• Symmetric, the growth rate of f is *more than* the growth rate of g.

Order notation: Summary

.

- *O*-notation: $f(x) \in O(g(x))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $|f(x)| \le c |g(x)|$ for all $x \ge n_0$.
- Ω-notation: $f(x) \in \Omega(g(x))$ if there exist constants c > 0 and $n_0 \ge 0$ such that $c |g(x)| \le |f(x)|$ for all $x \ge n_0$.
- Θ -notation: $f(x) \in \Theta(g(x))$ if there exist constants $c_1, c_2 > 0$ and $n_0 \ge 0$ such that $c_1 |g(x)| \le |f(x)| \le c_2 |g(x)|$ for all $x \ge n_0$.
- o-notation: $f(x) \in o(g(x))$ if for all constants c > 0, there exists a constant $n_0 \ge 0$ such that $|f(x)| \le c |g(x)|$ for all $x \ge n_0$.
- ω-notation: f(x) ∈ ω(g(x)) if for all constants c > 0, there exists a constant $n_0 \ge 0$ such that $c |g(x)| \le |f(x)|$ for all $x \ge n_0$.

Outline

- Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

The limit rule

Suppose that f(x) > 0 and g(x) > 0 for all $x \ge n_0$. Suppose that

$$L = \lim_{x \to \infty} \frac{f(x)}{g(x)}$$
 (in particular, the limit exists).

Then

$$f(x) \in \begin{cases} o(g(x)) & \text{if } L = 0 \\ \Theta(g(x)) & \text{if } 0 < L < \infty \\ \omega(g(n)) & \text{if } L = \infty. \end{cases}$$

The required limit can sometimes be computed using l'Hôpital's rule.

This gives *sufficient* (but not always necessary) conditions.

Application 1: Logarithms vs. polynomials

Compare the growth rates of $f(n) = \log n$ and g(n) = n.

Now compare the growth rates of $f(n) = (\log n)^c$ and $g(n) = n^d$ (where c > 0 and d > 0 are arbitrary numbers).

Application 2: Polynomials

Let f(n) be a polynomial of degree $d \ge 0$:

$$f(n) = c_d n^d + c_{d-1} n^{d-1} + \dots + c_1 n + c_0$$

for some $c_d > 0$.

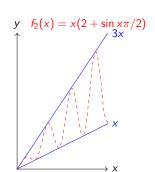
Then $f(n) \in \Theta(n^d)$:

Example: Oscillating functions

Consider two oscillating functions f_1 , f_2 for which $\lim_{n\to\infty} \frac{f_i(x)}{x}$ does not exist. Are they in $\Theta(n)$?

$$y \quad f_1(x) = x(1 + \sin x\pi/2)$$

$$2x$$



So no limit \rightsquigarrow must use other methods to prove asymptotic bounds.

Algebra of order notations

Many rules are easily proved from first principle (exercise).

Identity rule: $f(n) \in \Theta(f(n))$

Transitivity:

- If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.
- If $f(n) \in \Omega(g(n))$ and $g(n) \in \Omega(h(n))$ then $f(n) \in \Omega(h(n))$.
- If $f(n) \in O(g(n))$ and $g(n) \in o(h(n))$ then $f(n) \in o(h(n))$.
- ...

Maximum rules: Suppose that f(n) > 0 and g(n) > 0 for all $n \ge n_0$.

Then:

- $f(n) + g(n) \in O(\max\{f(n), g(n)\})$
- $f(n) + g(n) \in \Omega(\max\{f(n), g(n)\})$

Key proof-ingredient: $\max\{f(n),g(n)\} \le f(n)+g(n) \le 2\max\{f(n),g(n)\}$

Relationships between order notations

- $f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n))$
- $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$
- $f(n) \in o(g(n)) \Leftrightarrow g(n) \in \omega(f(n))$
- $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \in O(g(n))$
- $f(n) \in o(g(n)) \Rightarrow f(n) \notin \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \in \Omega(g(n))$
- $f(n) \in \omega(g(n)) \Rightarrow f(n) \notin O(g(n))$

Example: Fill the following table with TRUE or FALSE:

		Is $f(n) \in \ldots (g(n))$?			
f(n)	g(n)	0	0	Ω	ω
log n	\sqrt{n}				

Asymptotic notation and arithmetic

- Normally, we say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set.
- Avoid doing arithmetic with asymptotic notations. Do **not** write O(n) + O(n) = O(n). (CS136 allowed you to be sloppy here. CS240 does not.)
- Instead, when you do arithmetic, replace ' $\Theta(f(n))$ ' by ' $c \cdot f(n)$ for some constant c > 0'

(That's still sloppy, but less dangerous.)

Asymptotic notation and arithmetic

- Normally, we say $f(n) \in \Theta(g(n))$ because $\Theta(g(n))$ is a set.
- Avoid doing arithmetic with asymptotic notations. Do **not** write O(n) + O(n) = O(n).

(CS136 allowed you to be sloppy here. CS240 does not.)

• Instead, when you do arithmetic, replace ' $\Theta(f(n))$ ' by ' $c \cdot f(n)$ for some constant c > 0'

(That's still sloppy, but less dangerous.)

- There are some limited exceptions:
 - $f(n) = n^2 + \Theta(n)$ means " $f(n) = n^2 + g(n)$, with $g(n) \in \Theta(n)$ "
 - ★ nicer to read than " $n^2 + n + \log n$ "
 - ★ more precise about constants than " $\Theta(n^2)$ "
 - ▶ We use this sparingly (e.g., last slide)

Spring 2025

Outline

- Introduction and Asymptotic Analysis
 - CS240 Overview
 - Algorithm Design
 - Analysis of Algorithms I
 - Rules for asymptotic notation
 - Analysis of Algorithms Revisited

Techniques for run-time analysis

- Goal: Use asymptotic notation to simplify run-time analysis.
- Running time of an algorithm depends on the *input size* n.

```
\begin{array}{ll} \textit{print-pairs}(A, n) \\ 1. & \textbf{for } i \leftarrow 0 \textbf{ to } n-1 \textbf{ do} \\ 2. & \textbf{for } j \leftarrow 0 \textbf{ to } i-1 \textbf{ do} \\ 3. & \textbf{print 'the next pair is } \{A[i], A[j]\}' \end{array}
```

- Identify *primitive operations* that require $\Theta(1)$ time. (For doing arithmetic, assume they require c time for some c > 0.)
- The complexity of a loop is expressed as the <u>sum</u> of the complexities of each iteration of the loop.
- Nested loops: start with the innermost loop and proceed outwards.
 This gives nested summations.

Techniques for run-time analysis

- Goal: Use asymptotic notation to simplify run-time analysis.
- Running time of an algorithm depends on the *input size* n.

```
print-pairs(A, n)
1. for i \leftarrow 0 to n - 1 do
2. for j \leftarrow 0 to i - 1 do
3. print 'the next pair is \{A[i], A[j]\}'
```

- Identify *primitive operations* that require $\Theta(1)$ time. (For doing arithmetic, assume they require c time for some c > 0.)
- The complexity of a loop is expressed as the *sum* of the complexities of each iteration of the loop.
- Nested loops: start with the innermost loop and proceed outwards.
 This gives nested summations.

For *print-pairs*: The run-time is $\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c$.

Techniques for run-time analysis

Two general strategies are as follows.

Strategy I: Use Θ -bounds *throughout the analysis* and obtain a Θ -bound for the complexity of the algorithm.

For *print-pairs*:

Strategy II: Prove a *O*-bound and a *matching* Ω -bound *separately*. Use upper bounds (for O) and lower bounds (for Ω) early and frequently. This may be easier because upper/lower bounds are easier to sum. For *print-pairs*:

Complexity of algorithms

 Algorithm can have different running times on two instances of the same size.

```
insertion-sort(A, n)

A: array of size n

1. for (i \leftarrow 1; i < n; i++) do

2. for (j \leftarrow i; j > 0 \text{ and } A[j-1] > A[j]; j--) do

3. swap A[j] and A[j-1]
```

Let $T_A(I)$ denote the running time of an algorithm A on instance I.

Could study this value for the worst-possible, best-possible and 'typical' (average) instance I.

Complexity of algorithms

Worst-case (best-case) complexity of an algorithm: The worst-case (best-case) running time of an algorithm \mathcal{A} is a function $T: \mathbb{Z}^+ \to \mathbb{R}$ mapping n (the input size) to the longest (shortest) running time for any input instance of size n:

$$T_{\mathcal{A}}^{\mathrm{worst}}(n) = \max_{I \in \mathcal{I}_n} \{ T_{\mathcal{A}}(I) \}$$

$$T_{\mathcal{A}}^{\text{best}}(n) = \min_{I \in \mathcal{I}_n} \{ T_{\mathcal{A}}(I) \}$$

To prove a lower bound on the worst-case run-time: Pick one especially bad family of examples, and bound their run-time (using Ω -notation).

Average-case complexity of an algorithm: The average-case running

time of an algorithm \mathcal{A} is a function $T: \mathbb{Z}^+ \to \mathbb{R}$ mapping n (the input size) to the *average* running time of \mathcal{A} over all instances of size n:

$$T_{\mathcal{A}}^{avg}(n) = \sum_{I \in \mathcal{I}_n} T_{\mathcal{A}}(I) \cdot (\text{relative frequency of } I)$$

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

• Example: Suppose algorithm A_1 has worst-case run-time $O(n^3)$ and algorithm A_2 has worst-case run-time $O(n^2)$, and both solve the same problem. Is A_2 more efficient?

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

There are various pitfalls.

• Example: Suppose algorithm A_1 has worst-case run-time $O(n^3)$ and algorithm A_2 has worst-case run-time $O(n^2)$, and both solve the same problem. Is A_2 more efficient?

No! O-notation is an upper bound. A_1 may well have worst-case run-time O(n). We should always give Θ -bounds.

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

- Example: Suppose algorithm A_1 has worst-case run-time $O(n^3)$ and algorithm A_2 has worst-case run-time $O(n^2)$, and both solve the same problem. Is A_2 more efficient?
 - *No!* O-notation is an upper bound. A_1 may well have worst-case run-time O(n). We should always give Θ -bounds.
- Example: Suppose the run-times are $\Theta(n^3)$ and $\Theta(n^2)$, respectively. We consider A_2 to be better. But is it always more efficient?

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

- Example: Suppose algorithm \mathcal{A}_1 has worst-case run-time $O(n^3)$ and algorithm \mathcal{A}_2 has worst-case run-time $O(n^2)$, and both solve the same problem. Is \mathcal{A}_2 more efficient?
 - *No!* O-notation is an upper bound. A_1 may well have worst-case run-time O(n). We should always give Θ -bounds.
- Example: Suppose the run-times are $\Theta(n^3)$ and $\Theta(n^2)$, respectively. We consider A_2 to be better. But is it always more efficient?
 - *No!* The worst-case run-time of A_1 may only be achieved on some instances. Possibly A_1 is better on most instances.

Goal in cs240: For a problem, find an algorithm that solves it and whose tight bound on the worst-case running time has the smallest growth rate.

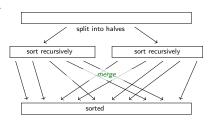
- Example: Suppose algorithm A_1 has worst-case run-time $O(n^3)$ and algorithm A_2 has worst-case run-time $O(n^2)$, and both solve the same problem. Is A_2 more efficient?
 - *No!* O-notation is an upper bound. A_1 may well have worst-case run-time O(n). We should always give Θ -bounds.
- Example: Suppose the run-times are $\Theta(n^3)$ and $\Theta(n^2)$, respectively. We consider A_2 to be better. But is it always more efficient?
 - *No!* The worst-case run-time of A_1 may only be achieved on some instances. Possibly A_1 is better on most instances.
 - Also, the hidden constants may be so large that A_1 is better on all but unrealistically big n.

To give an algorithm that 'solves a problem', we usually do four steps. We illustrate this here on *merge-sort*.

Step 1: Describe the overall idea

Input: Array A of n integers

- We split A into two subarrays
 A_L and A_R that are roughly half
 as big.
- 2 Recursively sort A_L and A_R
- After A_L and A_R have been sorted, use a function merge to merge them into a single sorted array.



Step 2: Give pseudo-code or detailed description.

```
merge-sort(A, n)

A: array of size n

1. if (n \le 1) then return

2. else

3. m = \lfloor (n-1)/2 \rfloor

4. merge-sort(A[0..m], m+1)

5. merge-sort(A[m+1..n-1], n-m-1)

6. merge(A, 0, m, n-1)
```

Two tricks to reduce constant in the run-time and auxiliary space:

- Do not pass array A by value, instead indicate the range of the array that needs to be sorted.
- merge uses an auxiliary array S. Allocate this only once.

Step 2: Give pseudo-code or detailed description.

```
\begin{array}{l} \textit{merge-sort}(A,n,\ell\leftarrow 0,r\leftarrow n-1,S\leftarrow \texttt{NULL})\\ \textit{A}: \textit{ array of size } n,\ 0\leq \ell\leq r\leq n-1\\ 1. \quad \textit{if } S \textit{ is NULL then initialize it as array } S[0..n-1]\\ 2. \quad \textit{if } (r\leq \ell) \textit{ then}\\ 3. \quad \textit{ return}\\ 4. \quad \textit{else}\\ 5. \qquad m=\lfloor (r+\ell)/2\rfloor\\ 6. \qquad merge-sort(A,n,\ell,m,S)\\ 7. \qquad merge-sort(A,n,m+1,r,S)\\ 8. \qquad merge(A,\ell,m,r,S) \end{array}
```

- This would be much better for an efficient implementation.
- But the idea is much harder to understand.
- CS240 pseudocode will often prefer clarity over improved constants.

Spring 2025

Step 2: Give pseudo-code or detailed description.

Idea for merging: Always extract from each sub-array the value that is smaller and append it to the output.

```
merge(A, \ell, m, r, S \leftarrow \texttt{NULL})
A is an array, A[\ell..m] is sorted, A[m+1..r] is sorted

1. if S is NULL then initialize it with same size as A // tmp-array

2. copy A[\ell..r] into S[\ell..r]

3. (i_L, i_R) \leftarrow (\ell, m+1); // start-indices of subarrays

4. for (k \leftarrow \ell; k \leq r; k++) do // fill-index for result

5. if (i_L > m) A[k] \leftarrow S[i_R++]

6. else if (i_R > r) A[k] \leftarrow S[i_L++]

7. else if (S[i_L] \leq S[i_R]) A[k] \leftarrow S[i_L++]

8. else A[k] \leftarrow S[i_R++]
```

Analysis of merge-sort

Step 3: Argue correctness.

- Can state loop-invariants, or other key-ingredients, but no need for a formal (CS245-style) proof by induction.
- Sometimes obvious enough from idea-description and comments.

Step 4: Analyze the run-time.

- First analyze work done outside recursions.
- If applicable, analyze subroutines separately.
- If there are recursions: how big are the subproblems? The run-time then becomes a recursive function.

The clean recurrences

Let $T^{\text{worst}}(n)$ and $T^{\text{best}}(n)$ be the worst-case and best-case runtime for *merge-sort* on an array of length n.

Observation:

- $T(A) = T(A_{\text{left}}) + T(A_{\text{right}}) + \text{time}(merge)$
- merge in size n takes between $c_1 n$ and $c_2 n$ operations, for some constants c_1, c_2 .

Easy consequences:

- $T^{\text{worst}}(n) \leq T^{\text{worst}}(\lceil \frac{n}{2} \rceil) + T^{\text{worst}}(\lfloor \frac{n}{2} \rfloor) + c_2 n$
- $T^{\mathrm{best}}(n) \geq T^{\mathrm{best}}(\lceil \frac{n}{2} \rceil) + T^{\mathrm{best}}(\lfloor \frac{n}{2} \rfloor) + c_1 n$

Proof: let A^{worst} be an array that gives the worst case in size n. Then ...

Simplifying the recurrences

Consider the simplified recurrence

$$T(n) = \begin{cases} T(\lceil \frac{n}{2} \rceil) + T(\lfloor \frac{n}{2} \rfloor) + c n & \text{if } n > 1 \\ c & \text{if } n = 1 \end{cases}$$

and the sloppy recurrence (floors and ceilings removed):

$$T^{\mathrm{slop}}(n) = \begin{cases} 2 \ T^{\mathrm{slop}}(\frac{n}{2}) + cn & \text{if } n > 1 \\ c & \text{if } n = 1. \end{cases}$$

When n is a power of 2, these recurrences are *identical* and can be solved by various methods. E.g., prove by induction that $T^{\text{slop}}(n) = cn \log(2n)$ for these n.

Can prove: $T(n) \in \Theta(n \log n)$ (by analyzing the simplified recurrence)

Summary and conclusion

Setup the exact recurrences:

$$T^{ ext{worst}}(n) \le T^{ ext{worst}}\left(\left\lceil rac{n}{2}
ight
ceil
ight) + T^{ ext{worst}}\left(\left\lfloor rac{n}{2}
ight
floor
ight) + c_2 n$$
 $T^{ ext{best}}(n) \ge T^{ ext{best}}\left(\left\lceil rac{n}{2}
ight
ceil
ight) + T^{ ext{best}}\left(\left\lfloor rac{n}{2}
ight
floor
ight) + c_1 n$

- Solve the sloppy recurrence: $\Theta(n \log n)$ for n power of 2
- Can prove:

$$T^{\text{worst}}(n) \in O(n \log n), \quad T^{\text{best}}(n) \in \Omega(n \log n)$$

• but $T^{\text{best}}(n) \leq T^{\text{worst}}(n)$ so both are $\Theta(n \log n)$.

This course: setup the sloppy recurrence and solve it (for nice n)

Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.

- You should know what you're doing if you write O(n) + O(n) = O(n).
- Example: What is wrong with the following proof?

Order notation and arithmetic revisited

Recall: You should not intermix order notation and arithmetic.

- You should know what you're doing if you write O(n) + O(n) = O(n).
- Example: What is wrong with the following proof?

Claim (false!): If
$$T(n) = \begin{cases} 2 T(\frac{n}{2}) + cn & \text{if } n > 1 \\ c & \text{if } n = 1. \end{cases}$$
 then $T(n) \in O(n)$.

"Proof": Use induction on n.

- In the base case (n = 1) we have $T(n) = c \in O(1) = O(n)$.
- Assume the claim holds for all n' with n' < n.
- Step: We have

$$T(n) = 2T(\frac{n}{2}) + cn \stackrel{IH}{\in} 2O(\frac{n}{2}) + O(n) = O(n) + O(n) = O(n)$$

Some recurrence relations

Recursion	resolves to	example	
$T(n) \leq T(n/2) + O(1)$	$T(n) \in O(\log n)$	binary-search	
$T(n) \leq 2T(n/2) + O(n)$	$T(n) \in O(n \log n)$	merge-sort	
$T(n) \leq 2T(n/2) + O(\log n)$	$T(n) \in O(n)$	heapify (*)	
$T(n) \leq cT(n-1) + O(1)$	$T(n) \in O(1)$	avg-case analysis (*)	
for some $c < 1$			
$T(n) \leq 2T(n/4) + O(1)$	$T(n) \in O(\sqrt{n})$	range-search (*)	
$T(n) \leq T(\sqrt{n}) + O(\sqrt{n})$	$T(n) \in O(\sqrt{n})$	interpol. search (*)	
$T(n) \leq T(\sqrt{n}) + O(1)$	$T(n) \in O(\log \log n)$	interpol. search (*)	

- Once you know the result, it is (usually) easy to prove by induction
- If lhs is tight (= sign instead of \leq , Θ), rhs is tight (Θ)
- Many more recursions, and some methods to find the result, in CS341.

(*) These may or may not get used later in the course.