
CS 240 – Data Structures and Data Management

Module 2: Priority Queues

Armin Jamshidpey, Éric Schost
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2025

version 2025-05-19 20:34

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 1 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

Review: Abstract data type

Abstract Data Type (ADT): A description of information and a
collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
How the information is stored (data structure)
How the operations are performed (algorithms)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 2 / 30

Review: ADT Stack

Stack: an ADT consisting of a collection of items with operations:

push: Add an item to the stack.
pop: Remove and return the most recently added item.

Items are removed in LIFO (last-in first-out) order.

We can have extra operations: size, is-empty, and top

ADT Stack can easily be realized using arrays or linked lists such that
operations take constant time (exercise).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 3 / 30

Review: ADT Queue

Queue: an ADT consisting of a collection of items with operations:

enqueue (or append or add-back): Add an item
to the queue.
dequeue (or remove-front): Remove and return
the least recently inserted item.

Items are removed in FIFO (first-in first-out) order.

We can have extra operations: size, is-empty, and peek/front

ADT Queue can easily be realized using (circular) arrays or linked lists
such that operations take constant time (exercise).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 4 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

ADT Priority Queue
Priority Queue generalizes both ADT Stack and ADT Queue.

It is a collection of items (each having a priority or key) with operations
insert: inserting an item tagged with a priority
delete-max: removing and returning an item of highest priority.

We can have extra operations: size, is-empty, and get-max

This is a maximum-oriented priority queue. A minimum-oriented
priority queue replaces operation delete-max by delete-min.

Applications:
How would you simulate a stack with a priority queue?

How would you simulate a queue with a priority queue?

Other applications: typical todo-list, simulation systems, sorting

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 5 / 30

Using a priority queue to sort

PQ-Sort(A[0..n − 1])
1. initialize PQ to an empty priority queue
2. for i ← 0 to n − 1 do
3. PQ.insert(an item with priority A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← priority of PQ.delete-max()

Note: Run-time depends on how we realize ADT Priority Queue.
Sometimes written as: O(initialization + n · insert + n · delete-max)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 6 / 30

Realizations of ADT Priority Queue

Realization 1: unsorted arrays (lists are similar) 12
0

99
1

37
2 3 4

(In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 12, <other info>•

)

Run-time of operations:
insert: Θ(1)
delete-max: Θ(n)

PQ-sort with this realization yields selection-sort.

Note: We assume dynamic arrays (= std::vector):
Keep track of size and capacity of array.
If size = capacity, copy items over to new array (twice as big).
This takes Θ(n) time but happens only after Θ(n) “cheap” insertions.
insert takes O(1) time when “amortized” (averaged over operations)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 7 / 30

Realizations of ADT Priority Queue

Realization 1: unsorted arrays (lists are similar) 12
0

99
1

37
2 3 4

(In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 12, <other info>•

)
Run-time of operations:

insert: Θ(1)
delete-max: Θ(n)

PQ-sort with this realization yields selection-sort.

Note: We assume dynamic arrays (= std::vector):
Keep track of size and capacity of array.
If size = capacity, copy items over to new array (twice as big).
This takes Θ(n) time but happens only after Θ(n) “cheap” insertions.
insert takes O(1) time when “amortized” (averaged over operations)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 7 / 30

Realizations of ADT Priority Queue

Realization 1: unsorted arrays (lists are similar) 12
0

99
1

37
2 3 4

(In our examples we only show the priorities, and we show them directly in
the node. A more accurate picture would be priority = 12, <other info>•

)
Run-time of operations:

insert: Θ(1)
delete-max: Θ(n)

PQ-sort with this realization yields selection-sort.

Note: We assume dynamic arrays (= std::vector):
Keep track of size and capacity of array.
If size = capacity, copy items over to new array (twice as big).
This takes Θ(n) time but happens only after Θ(n) “cheap” insertions.
insert takes O(1) time when “amortized” (averaged over operations)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 7 / 30

Realizations of ADT Priority Queue

Realization 2: sorted arrays 12
0

37
1

99
2 3 4

Run-time of operations:
insert: Θ(n)
delete-max: Θ(1)

PQ-sort with this realization yields insertion-sort.
Using sorted linked lists is identical.

Main advantage:
insert can be implemented to have Θ(1) best-case run-time (how?)
insertion-sort then has Θ(n) best-case run-time

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 8 / 30

Realizations of ADT Priority Queue

Realization 2: sorted arrays 12
0

37
1

99
2 3 4

Run-time of operations:
insert: Θ(n)
delete-max: Θ(1)

PQ-sort with this realization yields insertion-sort.
Using sorted linked lists is identical.

Main advantage:
insert can be implemented to have Θ(1) best-case run-time (how?)
insertion-sort then has Θ(n) best-case run-time

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 8 / 30

Realizations of ADT Priority Queue

Realization 2: sorted arrays 12
0

37
1

99
2 3 4

Run-time of operations:
insert: Θ(n)
delete-max: Θ(1)

PQ-sort with this realization yields insertion-sort.
Using sorted linked lists is identical.

Main advantage:
insert can be implemented to have Θ(1) best-case run-time (how?)
insertion-sort then has Θ(n) best-case run-time

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 8 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

Towards realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
A binary tree is either

▶ empty, or
▶ consists of three parts:

a node and two binary trees (left subtree and right subtree).
Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.
Level ℓ = all nodes with distance ℓ from the root. Root is on level 0.
Height h = maximum number for which level h contains nodes.
Single-node tree has height 0, empty tree has height −1.
Known: Any binary tree with height h has n ≤ 2h+1 − 1 nodes.

So height h ≥ log(n + 1)− 1 ∈ Ω(log n).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 9 / 30

Towards realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:
A binary tree is either

▶ empty, or
▶ consists of three parts:

a node and two binary trees (left subtree and right subtree).
Terminology: root, leaf, parent, child, level, sibling, ancestor,
descendant, etc.
Level ℓ = all nodes with distance ℓ from the root. Root is on level 0.
Height h = maximum number for which level h contains nodes.
Single-node tree has height 0, empty tree has height −1.
Known: Any binary tree with height h has n ≤ 2h+1 − 1 nodes.
So height h ≥ log(n + 1)− 1 ∈ Ω(log n).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 9 / 30

Example: Binary tree and heap

Binary tree with
1 structural property and

2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 10 / 30

Example: Binary tree and heap

50

29

27

23 26

15

47

8 20

Binary tree with
1 structural property and
2 heap-order property.

Recall: 15 represents
priority = 15, <other info>•

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 10 / 30

Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is in Θ(log n).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 11 / 30

Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is in Θ(log n).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 11 / 30

Heaps – Definition

A heap is a binary tree with the following two properties:

1 Structural Property: All the levels of a heap are completely filled,
except (possibly) for the last level. The filled items in the last level
are left-justified .

2 Heap-order Property: For any node i , the key of the parent of i is
larger than or equal to key of i .

The full name for this is max-oriented binary heap.

Lemma: The height of a heap with n nodes is in Θ(log n).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 11 / 30

Storing heaps in arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 12 / 30

Storing heaps in arrays

Heaps should not be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in
A[0] and continue with elements level-by-level from top to bottom, in each
level left-to-right.

50A[0]

29A[1]

27A[3]

23A[7] 26 A[8]

15 A[4]

47 A[2]

8A[5] 20 A[6]

0 1 2 3 4 5 6 7 8
A: 50 29 47 27 15 8 20 23 26

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 12 / 30

Heaps in arrays: Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0 (We use “node” and “index”
interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 13 / 30

Heaps in arrays: Navigation

It is easy to navigate the heap using this array representation:
the root node is at index 0 (We use “node” and “index”
interchangeably in this implementation.)
the last node is n − 1 (where n is the size)
the left child of node i (if it exists) is node 2i + 1
the right child of node i (if it exists) is node 2i + 2
the parent of node i (if it exists) is node ⌊ i−1

2 ⌋
these nodes exist if the index falls in the range {0, . . . , n−1}

We should hide implementation details using helper-functions!
functions root(), last(), parent(i), etc.

Some of these helper-functions need to know the size n. We assume that
the data structure stores this explicitly.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 13 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

insert in Heaps
insert(35):

50

29

27

23 26

15

47

8 20

By structural property: no choice where the new node can go.

This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
Time: O(height of heap) = O(log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 14 / 30

insert in Heaps
insert(35):

50

29

27

23 26

15

35

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.

Fix violations by “bubbling up” in the tree.
Time: O(height of heap) = O(log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 14 / 30

insert in Heaps
insert(35):

50

29

27

23 26

35

15

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.

Time: O(height of heap) = O(log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 14 / 30

insert in Heaps
insert(35):

50

35

27

23 26

29

15

47

8 20

By structural property: no choice where the new node can go.
This may or may not lead to heap-order violations.
Fix violations by “bubbling up” in the tree.
Time: O(height of heap) = O(log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 14 / 30

insert in heaps

fix-up(A, i) // i corresponds to a node of the heap
1. while parent(i) exists and A[parent(i)].key < A[i].key do
2. swap A[i] and A[parent(i)]
3. i ← parent(i)

insert(x)
1. A[ℓ← last() + 1]← x
2. increase size // size: stored by PQ
3. fix-up(A, ℓ)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 15 / 30

delete-max in heaps

50

35

27

23 26

29

15

47

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 16 / 30

delete-max in heaps

15

35

27

23 26

29

47

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 16 / 30

delete-max in heaps

47

35

27

23 26

29

15

8 20

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 16 / 30

delete-max in heaps

47

35

27

23 26

29

20

8 15

The maximum item of a heap is just the root node.
We replace root by the last leaf (last leaf is taken out).
The heap-order property might be violated: perform a fix-down:

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 16 / 30

delete-max in heaps

fix-down(A, i)
A: an array that stores a heap of size n
i: an index corresponding to a node of the heap
1. while i is not a leaf do
2. j ← left child of i // find child with larger key
3. if (i has right child and A[right child of i].key > A[j].key)
4. j ← right child of i
5. if A[i].key ≥ A[j].key break
6. swap A[j] and A[i]
7. i ← j

Time: O(height of heap) = O(log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 17 / 30

Realizing ADT Priority Queue with heaps

delete-max()
1. ℓ← last()
2. swap A[root()] and A[ℓ]
3. decrease size
4. fix-down(A, root(), size)
5. return A[ℓ]

Time: O(height of heap) = O(log n) (and this is tight).

Binary heap are a realization of priority queues where the operations insert
and delete-max take Θ(log n) time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 18 / 30

Realizing ADT Priority Queue with heaps

delete-max()
1. ℓ← last()
2. swap A[root()] and A[ℓ]
3. decrease size
4. fix-down(A, root(), size)
5. return A[ℓ]

Time: O(height of heap) = O(log n) (and this is tight).

Binary heap are a realization of priority queues where the operations insert
and delete-max take Θ(log n) time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 18 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 19 / 30

Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 19 / 30

Sorting using heaps
Recall: Any priority queue can be used to sort in time

O(initialization + n · insert + n · delete-max)

Using the binary-heaps implementation of PQs, we obtain:
PQ-sort-with-heaps(A)
1. initialize H to an empty heap
2. for i ← 0 to n − 1 do
3. H.insert(A[i])
4. for i ← n − 1 down to 0 do
5. A[i]← H.delete-max()

both operations run in O(log n) time for heaps
⇝ PQ-sort using heaps takes O(n log n) time (and this is tight).

Can improve this with two simple tricks → heap-sort
1 Can use the same array for input and heap. ⇝ O(1) auxiliary space!
2 Heaps can be built faster if we know all input in advance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 19 / 30

Building heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 20 / 30

Building heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 20 / 30

Building heaps with fix-up
Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

simple-heap-building(A)
A: an array
1. initialize H as an empty heap
2. for i ← 0 to A.size()− 1 do
3. H.insert(A[i])

This corresponds to doing fix-ups
Worst-case running time: O(n log n) (and this is tight).

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 20 / 30

Building heaps with fix-down

Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 21 / 30

Building heaps with fix-down

Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 21 / 30

Building heaps with fix-down

Problem: Given n items all at once (in A[0 · · · n − 1]), build a heap
containing all of them.

Solution 2: Using fix-downs instead:

heapify(A)
A: an array
1. n← A.size()
2. for i ← parent(last()) downto root() do
3. fix-down(A, i , n)

A careful analysis yields a worst-case complexity of Θ(n).
A heap can be built in linear time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 21 / 30

heapify example

A : 10
0

80
1

50
2

30
3

20
4

60
5

10
6

40
7

70
8

Corresponding tree:
10

80

30

40 70

20

50

60 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

50
2

30
3

20
4

60
5

10
6

40
7

70
8

Corresponding tree:
10

80

30
i = 3

40 70

20

50

60 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

50
2

70
3

20
4

60
5

10
6

40
7

30
8

Corresponding tree:
10

80

70
i = 3

40 30

20

50

60 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

50
2

70
3

20
4

60
5

10
6

40
7

30
8

Corresponding tree:
10

80

70

40 30

20

50
i = 2

60 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

60
2

70
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
10

80

70

40 30

20

60
i = 2

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

60
2

70
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
10

80
i = 1

70

40 30

20

60

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 10
0

80
1

60
2

70
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
10

i = 0

80

70

40 30

20

60

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 80
0

10
1

60
2

70
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
80

i = 0

10

70

40 30

20

60

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 80
0

70
1

60
2

10
3

20
4

50
5

10
6

40
7

30
8

Corresponding tree:
80

i = 0

70

10

40 30

20

60

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

heapify example

A : 80
0

70
1

60
2

40
3

20
4

50
5

10
6

10
7

30
8

Corresponding tree:
80

i = 0

70

40

10 30

20

60

50 10

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 22 / 30

Efficient sorting with heaps

Idea: PQ-sort with heaps.
O(1) auxiliary space: Use same input-array A for storing heap.

heap-sort(A)
1. // heapify
2. n← A.size()
3. for i ← parent(last()) downto 0 do
4. fix-down(A, i , n)

5. // repeatedly find maximum
6. while n > 1
7. // ‘delete’ maximum by moving to end and decreasing n
8. swap items at A[root()] and A[last()]
9. decrease n
10. fix-down(A, root(), n)

The for-loop takes Θ(n) time and the while-loop takes Θ(n log n) time.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 27 / 30

heap-sort example

Continue with the example from heapify:

80

70

40

10 30

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

30

70

40

10 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

70

40

30

10 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

60

50 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

60

40

30

70 80

20

50

10 10

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

50

10 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

50

40

30

70 80

20

10

10 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

40

30

70 80

20

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

40

30

10

70 80

20

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

20

30

10

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

30

20

10

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

20

30

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

20

10

30

70 80

40

10

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

10

30

70 80

40

20

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

heap-sort example

Continue with the example from heapify:

10

10

30

70 80

40

20

50 60

The array (i.e., the heap in level-by-level order) is now in sorted order.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 28 / 30

Heaps: Summary

Binary heap: A binary tree that satisfies structural property and
heap-order property.
Heaps are one possible realization of ADT PriorityQueue:

▶ insert takes time O(log n)
▶ delete-max takes time O(log n)
▶ Also supports findMax in time O(1)

A binary heap can be built in linear time.
PQ-sort with binary heaps leads to a sorting algorithm with O(n log n)
worst-case run-time (⇝ heap-sort)
We have seen here the max-oriented version of heaps (the maximum
priority is at the root).
There exists a symmetric min-oriented version that supports insert
and delete-min with the same run-times.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 29 / 30

Outline

2 Priority Queues
Abstract Data Types
ADT Priority Queue
Binary Heaps
Binary Heaps as PQ realization
PQ-sort and heap-sort
Towards the Selection Problem

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.

(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k (?) passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

Finding the smallest items

Problem: Find the kth smallest item in an array A of n numbers.
(Formally: kth smallest = the item that would be at A[k] if sorted.)

Solution 1: Make k+1 passes through the array, deleting the minimum
number each time.
Complexity: Θ(kn).

Solution 2: Sort A, then return A[k].
Complexity: Θ(n log n).

Solution 3: Create a min-heap with heapify(A). Call delete-min(A) k+1
times.
Complexity: Θ(n + k log n).

We can achieve Θ(n log n) worst-case time easily, but can we do better?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 2 Spring 2025 30 / 30

	Priority Queues
	Abstract Data Types
	Review: Abstract data type
	Review: ADT Stack
	Review: ADT Queue

	ADT Priority Queue
	ADT Priority Queue
	Using a priority queue to sort
	Realizations of ADT Priority Queue
	Realizations of ADT Priority Queue

	Binary Heaps
	Towards realization 3: Heaps
	Example: Binary tree and heap
	Heaps – Definition
	Storing heaps in arrays
	Heaps in arrays: Navigation

	Binary Heaps as PQ realization
	insert in Heaps
	insert in heaps
	delete-max in heaps
	delete-max in heaps
	Realizing ADT Priority Queue with heaps

	PQ-sort and heap-sort
	Sorting using heaps
	Building heaps with fix-up
	Building heaps with fix-down
	heapify example
	heapify run-time: proof
	Proof continued...
	Proof continued...
	Proof continued...
	Efficient sorting with heaps
	heap-sort example
	Heaps: Summary

	Towards the Selection Problem
	Finding the smallest items

