
CS 240 – Data Structures and Data Management

Module 4: Dictionaries

Armin Jamshidpey, Éric Schost
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2025

version 2025-06-01 21:23

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 1 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

Review: ADT Dictionary

Dictionary: A collection of items, each of which contains
a key
some data (the “value”)

and is called a key-value pair (KVP). Keys can be compared and are
(typically) unique.

Operations:
search(k) (also called lookup(k))
insert(k, v)
delete(k) (also called remove(k))
optional: successor, merge, is-empty, size, etc.

Examples: symbol table, license plate database

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 2 / 31

Review: Elementary realizations
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.

(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 3 / 31

Review: Elementary realizations
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.

(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 3 / 31

Review: Elementary realizations
Common assumptions:

Dictionary has n KVPs
Each KVP uses constant space
(if not, the “value” could be a pointer)
Keys can be compared in constant time

We commonly make one more assumption (to keep pseudo-code simple):
Dictionary is non-empty both before and after operation.

(In a real-life implementation you would have to treat these special cases.)

Easy realizations:

search insert delete
unsorted list/array Θ(n) Θ(1) Θ(1)
sorted array Θ(log n) Θ(n) Θ(n)
binary search tree Θ(height) Θ(height) Θ(height)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 3 / 31

Review: Binary search

Only applies to a sorted array : 30
0

40
1

70
2

90
3

100
4

120
5

140
6

binary-search(A, n, k)
A: Sorted array of size n, k: key
1. ℓ← 0, r ← n − 1
2. while (ℓ ≤ r)

3. m← ⌊ ℓ+r
2 ⌋

4. if (A[m] equals k) then return “found at A[m]”
5. else if (A[m] < k) then ℓ← m + 1
6. else r ← m − 1
7. return “not found, but would be between A[ℓ−1] and A[ℓ]”

We will return to binary search (and sometimes improve it!) later.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 4 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

Review: Binary search trees
Structure Binary tree: all nodes have two (possibly empty) subtrees

Every node stores a KVP
Empty subtrees usually not shown

Ordering Every key k in T .left is less than the root key.
Every key k in T .right is greater than the root key.

15

6

∅ 10

8

∅ ∅

14

∅ ∅

25

23

22

∅ ∅

∅

29

27

∅ ∅

50

∅ ∅(In our examples we only show the keys, and we show them directly in the
node. A more accurate picture would be key = 15, <other info>•

)
A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 5 / 31

Review: BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 6 / 31

Review: BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 6 / 31

Review: BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 6 / 31

Review: BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::search(24)

15

6

10

8 14

25

23

22 ∅

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 6 / 31

Review: BST as realization of ADT Dictionary

BST::search(k) Start at root, compare k to current node’s key.
Stop if found or subtree is empty, else recurse at subtree.

BST::insert(k, v) Search for k, then insert (k, v) as new node

Example: BST::insert(24, v)

15

6

10

8 14

25

23

22 24

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 6 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

27 50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.

If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

6

10

8 14

25

23

22 24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up

Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

15

10

8 14

25

23

22 24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Deletion in a BST
First search for the node x that contains the key.
If x is a leaf (both subtrees are empty), delete it.
If x has one non-empty subtree, move child up
Else, swap key at x with key at successor node and then delete that
node.

(Successor: next-smallest among all keys in the dictionary.)

22

10

8 14

25

23

24

29

50

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 7 / 31

Height of a BST
BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = maximum number for which level h contains nodes. Single-node tree
has height 0, empty tree has height -1

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)

Best-case: Θ(log n).
Any binary tree with n nodes has height h ≥ log(n + 1)− 1 (See
Module 2).

Goal: Create subclasses of BSTs where the height is always good.
Impose a structural property.
Argue that the property implies logarithmic height.
Discuss how to maintain the property during operatons.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 8 / 31

Height of a BST
BST::search, BST::insert, BST::delete all have cost Θ(h), where
h = maximum number for which level h contains nodes. Single-node tree
has height 0, empty tree has height -1

If n items are inserted one-at-a-time, how big is h?
Worst-case: n − 1 = Θ(n)

Best-case: Θ(log n).
Any binary tree with n nodes has height h ≥ log(n + 1)− 1 (See
Module 2).

Goal: Create subclasses of BSTs where the height is always good.
Impose a structural property.
Argue that the property implies logarithmic height.
Discuss how to maintain the property during operatons.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 8 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

AVL trees
Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node z has left subtree L and right subtree R, then

height(R)− height(L) must be in {−1, 0, 1}

Things to show:

This structural condition implies logarithmic height.
After insert and delete, we can restore the structural condition within
logarithmic time.

▶ For this, we need to store at each node z the height of the subtree
rooted at it.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 9 / 31

AVL trees
Introduced by Adel’son-Vel’skĭı and Landis in 1962, an AVL tree is a BST
with an additional height-balance property at every node:

The heights of the left and right subtree differ by at most 1.

Rephrase: If node z has left subtree L and right subtree R, then

height(R)− height(L) must be in {−1, 0, 1}

Things to show:

This structural condition implies logarithmic height.
After insert and delete, we can restore the structural condition within
logarithmic time.

▶ For this, we need to store at each node z the height of the subtree
rooted at it.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 9 / 31

AVL tree example

(The lower numbers indicate the height of the subtree.)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 10 / 31

AVL tree example
Alternative: store height-difference (instead of height) at each node.

22
-1

10
+1

4
+1

6
0

14
+1

13
0

18
-1

16
0

31
+1

28
0

37
+1

46
0

Saves space (2 bits vs. 1 integer per node)
Pseudo-code gets a lot more complicated ⇝ not done here

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 11 / 31

AVL trees: Height
Theorem: The height of an AVL tree on n nodes is in Θ(log n)
⇒ search, BST::insert, BST::delete all cost Θ(log n) in the worst case!

Proof:
Define N(h) to be the least number of nodes in a height-h AVL tree.
What is a recurrence relation for N(h)?
What does this recurrence relation resolve to?

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 12 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

AVL trees: Insertion

To perform AVL::insert(k, v):
First, insert (k, v) with the usual BST insertion.

We assume that this returns the new leaf z where the key was stored.

Then, move up the tree from z .(
We assume for this that we have parent-links. This can be
avoided if BST::insert returns the full path to z .

)
Update height (easy to do in constant time):

set-height-from-subtrees(u)
1. u.height ← 1 + max{u.left.height, u.right.height}

If the height difference becomes ±2 at node z , then z is unbalanced.
Must re-structure the tree to rebalance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 13 / 31

AVL tree insertion: Example
Example: AVL::insert(8)

22
4

10
3

4
1

6
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 14 / 31

AVL tree insertion: Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
0?

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 14 / 31

AVL tree insertion: Example
Example: AVL::insert(8)

22
4?

10
3?

4
1?

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 14 / 31

AVL tree insertion: Example
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 14 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

Changing structure without changing order

Note: There are many different BSTs with the same keys.

20

A

40

30

B C

D

20

A

30

B

40

C D

30

20

A B

40

C D

40

30

20

A B

C

D

40

20

A

30

B C

D

Goal: Change the structure locally without changing the order .

Longterm goal: Restructure such that the subtree becomes balanced.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 15 / 31

Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 16 / 31

Right Rotation

This is a right rotation on node z :

z

c

g

A B

C

D

c

g

A B

z

C D

Note: Only O(1) links are changed. Useful to fix left-left imbalance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 16 / 31

Why do we call this a rotation?

z

c

g

A B

C

D

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 17 / 31

Why do we call this a rotation?

c

g

A B

C

z

D

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 17 / 31

Why do we call this a rotation?

c

g

A B

z

C D

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 17 / 31

Right Rotation: Pseudocode

rotate-right(z)
1. c ← z .left

2. // fix links connecting to above
3. c.parent ← (p ← z .parent)
4. if p = NULL then root ← c else
5. if p.left = z then p.left ← c else p.right ← c

6. // actual rotation
7. z .left ← c.right, c.right.parent ← z
8. c.right ← z , z .parent ← c

9. set-height-from-subtrees(z), set-height-from-subtrees(c)
10. return c // returns new root of subtree

Run-time: O(1)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 18 / 31

Left Rotation

Symmetrically, this is a left rotation on node z :

z

A

c

B

g

C D

c

z

A B

g

C D

Again, only O(1) links need to be changed. Useful to fix right-right
imbalance.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 19 / 31

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.

Second, a right rotation at z .

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 20 / 31

Double Right Rotation

This is a double right rotation on node z :

z

c

A

g

B C

D

z

g

c

A B

C

D

g

c

A B

z

C D

First, a left rotation at c.
Second, a right rotation at z .

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 20 / 31

Double Left Rotation

Symmetrically, there is a double left rotation on node z :

z

A

c

g

B C

D

g

z

A B

c

C D

First, a right rotation at c.
Second, a left rotation at z .

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 21 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

AVL tree insertion: Example revisited
Example: AVL::insert(8)

22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 22 / 31

AVL tree insertion revisited

Imbalance at z : do (single or double) rotation
Choose c as child where subtree has bigger height.

AVL::insert(k, v)
1. z ← BST::insert(k, v) // new leaf with k
2. while (z is not NULL)
3. if (|z .left.height − z .right.height| > 1) then
4. Let c be taller child of z
5. Let g be taller child of c (so grandchild of z)
6. z ← restructure(g , c, z) // see later
7. break // can argue that we are done
8. set-height-from-subtrees(z)
9. z ← z .parent

Can argue: For insertion one rotation restores all heights of subtrees.
⇒ No further imbalances, can stop checking.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 23 / 31

Fixing a slightly-unbalanced AVL tree

restructure(g , c, z)
node g is child of c which is child of z

1. case



z

c

g

: :
// Right rotation
u ← rotate-right(z)

z

c

g

: : // Double-right rotation
rotate-left(c)
u ← rotate-right(z)

z

c

g

: : // Double-left rotation
rotate-right(c)
u ← rotate-left(z)

z

c

g

: : // Left rotation
u ← rotate-left(z)

2. return u

Rule: The middle key of g , c, z becomes the new root.
A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 24 / 31

AVL tree insertion: Example revisited

Example: AVL::insert(8)
22
4?

10
3?

4
2

6
1

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 25 / 31

AVL tree insertion: Example revisited

Example: AVL::insert(8)
22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 25 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

38
1

36
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

38
1?

36
0?

35
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

38
1?

36
1

35
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

38
2

36
1

35
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4?

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

31
2?

28
0

38
2

36
1

35
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

AVL tree insertion: Second example
Example: AVL::insert(36), AVL::insert(35)

22
4

10
3

6
1

4
0

8
0

14
2

13
0

18
1

16
0

36
2

31
1

28
0

35
0

38
1

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 26 / 31

Outline

4 Dictionaries and Balanced Search Trees
ADT Dictionary
Binary Search Trees
AVL Trees
Insertion in AVL Trees
Restructuring a BST: Rotations
AVL insertion revisited
Deletion in AVL Trees

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025

AVL trees: Deletion
Remove the key k with BST::delete.
Find node where structural change happened.

(This is not necessarily near the node that had k.)
Go back up to root, update heights, and rotate if needed.

AVL::delete(k)
1. z ← BST::delete(k)
2. // Assume z is the parent of the BST node that was removed
3. while (z is not NULL)
4. if (|z .left.height − z .right.height| > 1) then
5. Let c be taller child of z
6. Let g be taller child of c (break ties to avoid double rotation)
7. z ← restructure(g , c, z)
8. // Always continue up the path
9. set-height-from-subtrees(z)
10. z ← z .parent

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 27 / 31

AVL trees deletion: Example

Example: AVL::delete(22)
22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A single restructure is not enough to restore all balances.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 28 / 31

AVL trees deletion: Example

Example: AVL::delete(22)
22
4

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2

28
0

37
1

46
0

A single restructure is not enough to restore all balances.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 28 / 31

AVL trees deletion: Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

A single restructure is not enough to restore all balances.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 28 / 31

AVL trees deletion: Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

31
2?

37
1

46
0

A single restructure is not enough to restore all balances.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 28 / 31

AVL trees deletion: Example

Example: AVL::delete(22)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

A single restructure is not enough to restore all balances.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 28 / 31

AVL trees deletion: Example

Example: AVL::delete(22) (cont’d)
28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 29 / 31

AVL trees deletion: Example

Example: AVL::delete(22) (cont’d)
10
4

6
2

4
1

2
0

8
0

28
3

14
2

13
0

18
1

16
0

37
1

31
0

46
0

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 29 / 31

AVL trees deletion: Example
Important: Ties must be broken to avoid double rotation.
Consider again the above example. If we applied double-rotation:

28
4?

10
3

6
2

4
1

2
0

8
0

14
2

13
0

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.
Violation is below where we check further.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 30 / 31

AVL trees deletion: Example
Important: Ties must be broken to avoid double rotation.
Consider again the above example. If we applied double-rotation:

14
4

10
3

6
2

4
1

2
0

8
0

13
0

28
2

18
1

16
0

37
1

31
0

46
0

Resulting tree is not an AVL-tree.
Violation is below where we check further.

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 30 / 31

AVL trees: Summary

search: Just like in BSTs, costs Θ(height)

insert: BST::insert, then check & update along path to new leaf
total cost Θ(height)
restructure will be called at most once.

delete: BST::delete, then check & update along path to deleted node
total cost Θ(height)
restructure may be called Θ(height) times.

Worst-case cost for all operations is Θ(height) = Θ(log n).

In practice, the constant is quite large.
Other realizations of ADT Dictionary are better in practice (→ later)

A. Jamshidpey, É. Schost (CS-UW) CS240 – Module 4 Spring 2025 31 / 31

	Dictionaries and Balanced Search Trees
	ADT Dictionary
	Review: ADT Dictionary
	Review: Elementary realizations
	Review: Binary search

	Binary Search Trees
	Review: Binary search trees
	Review: BST as realization of ADT Dictionary
	Deletion in a BST
	Height of a BST

	AVL Trees
	AVL trees
	AVL tree example
	AVL tree example
	AVL trees: Height

	Insertion in AVL Trees
	AVL trees: Insertion
	AVL tree insertion: Example

	Restructuring a BST: Rotations
	Changing structure without changing order
	Right Rotation
	Why do we call this a rotation?
	Right Rotation: Pseudocode
	Left Rotation
	Double Right Rotation
	Double Left Rotation

	AVL insertion revisited
	AVL tree insertion: Example revisited
	AVL tree insertion revisited
	Fixing a slightly-unbalanced AVL tree
	AVL tree insertion: Example revisited
	AVL tree insertion: Second example

	Deletion in AVL Trees
	AVL trees: Deletion
	AVL trees deletion: Example
	AVL trees deletion: Example
	AVL trees deletion: Example
	AVL trees: Summary

