CS 240 — Data Structures and Data Management

Module 5: Other Dictionary Implementations

Armin Jamshidpey, Eric Schost

Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Spring 2025

version 2025-06-09 09:50

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 1/21

Outline

© Dictionaries with Lists revisited
@ Dictionary ADT: Implementations thus far
@ Skip Lists
@ Biased Search Requests
@ Optimal Static Ordering
@ Dynamic Ordering: MTF

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Spring 2025

Outline

© Dictionaries with Lists revisited
@ Dictionary ADT: Implementations thus far

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:

Unordered array or list: ©(1) insert, ©(n) search and delete
e Ordered array: O(logn) search, ©(n) insert and delete

e Binary search trees: ©(height) search, insert and delete
]

Balanced Binary Search trees (AVL trees):
©(log n) search, insert, and delete

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 2/21

Dictionary ADT: Implementations thus far

A dictionary is a collection of key-value pairs (KVPs), supporting
operations search, insert, and delete.

Realizations we have seen so far:
@ Unordered array or list: ©(1) insert, ©(n) search and delete
e Ordered array: O(logn) search, ©(n) insert and delete
e Binary search trees: ©(height) search, insert and delete
e Balanced Binary Search trees (AVL trees):

O(log n) search, insert, and delete
Improvements/Simplifications?

@ Can show: If the KVPs were inserted in random order, then the
expected height of the binary search tree would be O(log n).

@ How can we use randomization within the data structure to mirror
what would happen on random input?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 2/21

Outline

© Dictionaries with Lists revisited

@ Skip Lists

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Towards skip lists

We did not consider an ordered list as realization of ADT Dictionary.
Why?
e insert and delete take ©(1) time in an ordered lists, once we know the
place where to do them.

@ The bottleneck is search:
> In an ordered array, we can do binary search to achieve O(log n)

run-time.
> In an ordered list, we cannot ‘skip to the middle' and so cannot do

binary search.
» Therefore search takes ©(n) time in an ordered list—too slow.

Idea: To speed up search in an ordered list, add more links to help us skip
forward quicker. Choose randomly when to add such links.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 3/21

Skip lists

A hierarchy of ordered linked lists (levels) Lo, Ly, -+, Lp:

Each list L; contains the special keys —co and 400 (sentinels)
@ List Ly contains the KVPs of S in non-decreasing order.
(The other lists store only keys and references.)

@ Each list is a subsequence of the previous one, i.e.,
LoD Ly 22 Ly
@ List Ly contains only the sentinels, all other lists contain at least one
non-sentinel.
L3 —o0 M 00
Lr[—oc0 — 65 — S oo
L[—o0 % 37 5 65 > 83 " 94 P oo |

Lo[=00 P{(23.v)P{(37.v)P(44,v)B{(65v)[{(69.v)P{(79.v) (83, v)P[(87.v)B{(94 V)P o<]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 4 /21

Skip lists

L3| —oc0 N oo
—
Lo| — » 65 |7 u
2 [e.e] | | [ee]
L[—o0 5 37 5 65 M 5 83 s 94 P oo]
IT, | : IT,

Lo [= MMM HEMIE IV PES IHETPE I]

A few more definitions:
@ node = entry in one list vs. KVP = one non-sentinel entry in Lg

@ There are (usually) more nodes than KVPs
Here # (non-sentinel) nodes = 14 vs. n < # KVPs = 0.

root = topmost left sentinel is the only field of the skip list.

Each node p has references p.after and p.below

Each key k belongs to a tower of nodes

» Height of tower of k: maximal index i such that k € L;
» Height of skip list: maximal index h such that Lj exists

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 5/21

Skip lists: Search

For each list, find predecessor (node before where k would be).
This will also be useful for insert/delete.

get-predecessors (k)
1. p < root
P < stack of nodes, initially containing p
while p.below # NULL do
p < p.below
while p.after.key < k do p < p.after

P.push(p)
return P

Nooas~wbN

skipList::search (k)

1. P « get-predecessors(k)

2. po < P.top() // predecessor of k in Ly

3. if pg.after.key = k return KVP at pg.after
4. else return “not found, but would be after py"”

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 6 /21

Skip list search: Example
Example: search(87)

» 00
» 65 M 0o
" 37 " 65 583 94 B oo |

Lo[—oo P{(23,v)B{(37.v){(44.v){(65.v)H(69,v)B{(79.v){(83.v) (87 v) B (94.v)B] oo]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list search: Example
Example: search(87)

s oo
» 65 M 0o
65 > 83 7 94

1 65 | 1 83 =

Lo[=00 P{(23.V)P{(37.V)p{(44,)]3{(65.v) P{(69.V) (79 V) (83 VB{(87.v)B{(94.V)P] e |

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list search: Example
Example: search(87)

s oo
» 65 M 0o
65 > 83 7 94

1 65 | 1 83 =

Lo[=00 P{(23.V)P{(37.V)p{(44,)]3{(65.v) P{(69.V) (79 V) (83 VB{(87.v)B{(94.V)P] e |

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list search: Example
Example: search(87)

L3| —o0 ¥ 00
Ly[—o0 65 | s[oo
L 37 o 65 o 83 o 04

1[=] 1 65 | 1 83 =N

Lo[=00 P{(23V)P{(37.v)P{(44,v)]3{(65,v) P{(69.V) (79 V)B{(83 VP{(87.v)P{(94.V)P e |

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list search: Example
Example: search(87)

L3| —o0 ¥ 00
L[—o0 65 | S
Li[—o0] 37 | 65 M 83] [94 B o]

Lo[=00 P{(23V)P{(37.v)P{(44,v)]3{(65,v)P{(69.V) (79 V) B{(83 VP{(87.v)P{(94.)P ° |

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list search: Example
Example: search(87)

I:I key compared with k

[] addedto P
—> path taken by p
Final stack returned: (83,v)
83
65
—00

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 7/21

Skip list: Deletion

It is easy to remove a key since we can find all predecessors.
Then eliminate lists if there are multiple ones with only sentinels.

skipList::delete(k)
1. P « get-predecessors(k)
2. while P is non-empty
3. p < P.pop() // predecessor of k in some list
4. if p.after.key = k
5. p.after < p.after.after
6. else break // no more copies of k
7. p < left sentinel of the root-list
8. while p.below.after is the co-sentinel
// top two lists have only sentinels, remove one
9. p.below < p.below.below
10. p.after.below < p.after.below.below

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 8 /21

Skip list deletion: Example

Example: skipList::delete(65)

L3| —o0 N oo
L[—)@ >%
Li[—o0] 3Z| >|6f| >|§3| >|94H
Lo[—oo PB{(23,v)B{(37.v){(44.v){(65,v) B (69,v)B{(79.v){(83.v) (87, v) b (94 v)|—)|

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 9 /21

Skip list deletion: Example

Example: skipList::delete(65)
get-predecessors(65)

e] oo H
Lo[—oo P{(23,v)B{(37.v)B(44.v){(65,v) B (69,v)P{(79.v)}¥{(83.v) (87, v) b (94 v)|—)|

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 9 /21

Skip list deletion: Example

Example: skipList::delete(65)
get-predecessors(65)

¥ 37 s 83] s 94 B
P

S (0] 2 R .y 30 CE RO S LA (G20

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 9 /21

Skip list deletion: Example

Example: skipList::delete(65)
get-predecessors(65)
Height decrease

<5 ==

L[—o0 ¥ 37 s 83] s 94 B
ul

S (0] 2 R .y 30 CE RO S LA (G20

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 9 /21

Skip lists: Insertion

skipList::insert(k, v)
@ There is no choice as to where to put the tower of k.

@ Only choice: how tall should we make the tower of k?

» Choose randomly! Repeatedly toss a coin until you get tails
» Let i the number of times the coin came up heads
» We want key k to be in lists Lo, ..., L;, so i — height of tower of k

Pr(tower of key k has height > i) = (%)’

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 10 /21

Skip lists: Insertion

skipList::insert(k, v)
@ There is no choice as to where to put the tower of k.

@ Only choice: how tall should we make the tower of k?

» Choose randomly! Repeatedly toss a coin until you get tails
» Let i the number of times the coin came up heads
» We want key k to be in lists Lo, ..., L;, so i — height of tower of k

Pr(tower of key k has height > i) = (%)’

@ Before we can insert, we must check that these lists exist.
» Add sentinel-only lists, if needed, until height h satisfies h > i.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 10 /21

Skip lists: Insertion

skipList::insert(k, v)
@ There is no choice as to where to put the tower of k.

@ Only choice: how tall should we make the tower of k?

» Choose randomly! Repeatedly toss a coin until you get tails
» Let i the number of times the coin came up heads
» We want key k to be in lists Lo, ..., L;, so i — height of tower of k

Pr(tower of key k has height > i) = (%)’

@ Before we can insert, we must check that these lists exist.
» Add sentinel-only lists, if needed, until height h satisfies h > i.

@ Then do the actual insertion.
» Use get-predecessors(k) to get stack P.
» The top i items of P are the predecessors pg, p1,- - , p; of where k
should be in each list Lo, Ly, -+, L;
> Insert (k,v) after pg in Lo, and k after p; in L; for 1 <j <

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 10 /21

Skip list insertion: Example

Example: skipList::insert(52, v)
Coin tosses: HT =i=1

L3| —o0 M 00
Ly| —o0 7 65 W oo
Li[-0} o 37] " 65 5 83 94 P oo |

Lo [C M@ DG IHEHE IHEIHTIIHE IHET IR Ib]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 1 /21

Skip list insertion: Example

Example: skipList::insert(52, v)
Coin tosses: HT =i=1
Have h =3 > i = no need to add lists

L3| —o0 M 00
Ly| —o0 7 65 W oo
Li[-0} o 37] " 65 5 83 94 P oo |

Lo [C M@ DG IHEHE IHEIHTIIHE IHET IR Ib]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 1 /21

Skip list insertion: Example

Example: skipList::insert(52, v)

Coin tosses: HT =i=1

Have h =3 > i = no need to add lists
get-predecessors(52)

L3 —0o0) o0
Ly —o0 7 65 W oo
Li[—oo} M 37 } " 65 583 94 P oo |

Lo = M@ IHGT NG IHEIHTI B IHET IR Ib >]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 1 /21

Skip list insertion: Example

Example: skipList::insert(52, v)

Coin tosses: HT =i=1

Have h =3 > i = no need to add lists
get-predecessors(52)

Insert 52 in lists Lg, ..., L;

L3| —o0 M 00

Lo —o0 > 65 > 00

Li[—oo} vl gll > 65 5 83 94 P oo |
T

Lo[=00 P23 PGV EEY) (65 V)B{(69.VB{TIMPE3MPET.MB4. P <]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 1 /21

Skip list insert: Example 2

Example: skipList::insert(100, v)
Coin tosses: HHHT =i=3

L3 —00 s
Ly| —oc0 65 » 00
Li[—oo} o 37] { 52 |5 65 | y 83 " 94 P oo]

T T T T
Lo[=50 MZBMHBT @28 HE T HEHET G4 >]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025

12 /21

Skip list insert: Example 2

Example: skipList::insert(100, v)
Coin tosses: HHHT =/i=3
Height increase

Ls| —0c0 s oo
L3| —c0 s
Ly| —oc0 @ 3 oo
L[~} o 37 | {52 Bf 65 | o 83 | o 94 B[>]

T T T T
Lo[=50 MZBMHBT @28 HE T HEHET G4 >]

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 12 /21

Skip list insert: Example 2

Example: skipList::insert(100, v)
Coin tosses: HHHT =/i=3
Height increase
get-predecessors(100)

Ls| —0c0 s oo
L3| —o0 s
Lo| —o0)@ 3 00
Li[—oc} o 37 | { 52]+ 65 } EER M 94 P oo]

T T T T
Lo[=50 MZBMHBT @M G2 {8 HE T EE I HET A > |

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 12 /21

Skip list insert: Example 2

Example: skipList::insert(100, v)
Coin tosses: HHHT =i=3
Height increase
get-predecessors(100)

Insert 100 in lists Lo, ..., L;

L] —c0

[3| —oc0

e g

Ly [=oc} o 37] { 52] 65 |)@

12 /21

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025

Skip list: Insertion

1.

© N O wDd

—=
N =

._\
o

=
> w

skipList::insert(k, v)

for (i < 0; random(2) = 1;i++) {} // random tower height

for (h < 0, p « root.below;p # NULL;p < p.below, h++) {}

while i > h // increase skip-list height?
create new sentinel-only list; link it in below topmost list
h++

P <+ get-predecessors(k)
p < P.pop() // insert (k,v) in Lo
Zbelow < New node with (k, v);
Zpelow-after <— p.after; p.after < Zpejow
while / > 0 // insert k in Li,...,L;
p < P.pop()
z < new node with k
z.after < p.after; p.after < z; z.below < Zpejow; Zbelow < Z
i+—i—1

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 13/21

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

» Expected height?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 14 /21

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

» Expected height? O(log n)

So expected space is O(n).

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 14 /21

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

» Expected height? O(log n)

So expected space is O(n).
@ Run-time of operations is dominated by get-predecessors:

» How often do we drop down (execute p < p.below)? height.

» How often do we step forward (execute p < p.after)?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 14 /21

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

» Expected height? O(log n)

So expected space is O(n).

@ Run-time of operations is dominated by get-predecessors:
» How often do we drop down (execute p < p.below)? height.

» How often do we step forward (execute p < p.after)?
Expect O(1) forward-steps per list

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 14 /21

Skip lists: Analysis

o Expected space: O(#non-sentinels + height).
» Expected number of non-sentinels? O(n)

» Expected height? O(log n)

So expected space is O(n).

@ Run-time of operations is dominated by get-predecessors:
» How often do we drop down (execute p < p.below)? height.
» How often do we step forward (execute p < p.after)?
Expect O(1) forward-steps per list

So search, insert, delete have O(log n) expected run-time.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 14 /21

Skip lists: Summary

@ O(n) expected space, all operations take O(log n) expected time.

@ Lists make it easy to implement. We can also easily add more
operations (e.g. successor, merge,...)

@ As described they are no better than randomized binary search trees.

@ But there are numerous improvements on the space:

» Can save links (hence space) by implementing towers as array.

! A
—}{ (23,v) }sf (37,v) H (44,v) H

.

°

.
00

o =\
= (69.v) [(79.v) }3{ (83,v) H (87,v) }3{ (94,v) |-F

—0Q

(65,v)

» Biased coin-flips to determine tower-heights give smaller expected space
» With both ideas, expected space is < 2n (less than for a BST).

A. Jamshidpey, E. Schost (CS-UW)

CS240 — Module 5 Spring 2025 15 /21

Outline

© Dictionaries with Lists revisited

@ Biased Search Requests

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Biased search request

Thus far: All keys are assumed to be equal.

@ Any key k is equally often the key used when searching.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 16 / 21

Biased search request

Thus far: All keys are assumed to be equal.

@ Any key k is equally often the key used when searching.

In reality: Some keys are more frequently accessed than others
(access: insertion or successful search)

@ 80/20 rule: 80% of outcomes result from 20% of causes.

@ Rule of temporal locality: A recently accessed item is likely to be
accessed soon again.

@ How can we handle such biased search requests?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 16 / 21

Biased search request

Thus far: All keys are assumed to be equal.

@ Any key k is equally often the key used when searching.

In reality: Some keys are more frequently accessed than others
(access: insertion or successful search)

@ 80/20 rule: 80% of outcomes result from 20% of causes.

@ Rule of temporal locality: A recently accessed item is likely to be
accessed soon again.

@ How can we handle such biased search requests?

Intuition: Frequently accessed items should be near the front (place
where we first search in the data structure).

@ Two scenarios: Do we know the access distribution beforehand or not?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 16 / 21

Outline

© Dictionaries with Lists revisited

@ Optimal Static Ordering

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Optimal static ordering

Scenario: We know access distribution, and want the best order of a list.

Example:

key H A ‘ B ‘
number of accesses H 2 ‘ 8 ‘

@ Order [0 {58 [¢] seems better than
order [A}—{B] [D]

@ How do we formalize “better”?

C|D]JE
1[10]5

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 17 /21

Optimal static ordering

Scenario: We know access distribution, and want the best order of a list.

Example:

@ Order [0 15 [c] seems better than
order [A }—[B] [D]

@ How do we formalize “better”?

B|C|D|E
8|1]10]5

key H A
number of accesses H 2

number of accesses of k
total number of accesses

@ Define access probability of key kK =
@ Analyze (for any fixed order of keys) the

expected access cost = Z i - (access-probability of key at position /)
i>1

(This is proportional to the (weighted) average-case time for search.)

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 17 /21

Optimal static ordering

Example: key | A|B|C|D]|E
number of accesses || 2 | 8 1 110]| 5
access-probability || % | = | 55 | 32 | »

o Order &] [0 [€] has expected access cost
2 8 1 10 5 £ _ 86 .
56 1+t 2+56:3+56 4+ 5=75~331

@ Order [0 +H{&] <1 is better!

10 8 5 2 1 . g _ 66
56 1+ 2624 534554+ 5 5= ~254

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Spring 2025

18 / 21

Optimal static ordering

Example: key|| A|B|C|D]JE
number of accesses || 2 | 8 | 1 | 10| 5
access-probability || & | = | 5 | 32 | »

@ Order &] [0 - €] has expected access cost

2 8 1 10 5 .5 _ 86 .
56 11262+ 53+ 36 4+ 5-5=5 ~331

@ Order is better!
10 8 5 2 1 _ 66
V1+8.2+2.3+2.4+L.5=8x~054

Claim: Over all possible static orderings, we minimize the expected access
cost by sorting by non-increasing access-probability.

Proof:
@ Consider any other ordering. How can we improve its access cost?

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 18 /21

Outline

© Dictionaries with Lists revisited

@ Dynamic Ordering: MTF

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5

Dynamic ordering: MTF

Scenario: We do not know the access probabilities ahead of time.

o Idea: modify the order dynamically, i.e., while we are accessing.
@ Rule of thumb (temporal locality): A recently accessed item is likely
to be used soon again.

@ Move-To-Front heuristic (MTF): Upon a successful search, move
the accessed item to the front of the list

[AJ—=1B = CF—={D—]E]

1 search(D)

[D =l A =B F—={Cl—E]

J insert(F)
F o A —le =]
@ We can also do MTF on an array, but should then insert and search
from the back so that we have room to grow.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 19 /21

Dynamic ordering: Other ideas

There are other heuristics we could use:

@ Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

[AF—=18F—={C =D F—E]

1 search(D)

[AF—={B—={D = CF—lE]

J insert(F)

[FF—={A}t—={B]—{D}F=[c—E]

Here the changes are more gradual.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 20 /21

Dynamic ordering: Other ideas

There are other heuristics we could use:

@ Transpose heuristic: Upon a successful search, swap the accessed
item with the item immediately preceding it

[AF—=18F—={C =D F—E]

1 search(D)

[AF—={B—={D = CF—lE]

J insert(F)

[FF—={A}t—={B]—{D}F=[c—E]

Here the changes are more gradual.

e Frequency-count heuristic: Keep counters how often items were
accessed, and sort in non-decreasing order.
Works well in practice, but requires auxiliary space.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 20 /21

Biased search requests: Summary

@ We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

@ For any dynamic reordering heuristic, some sequence will defeat it
(have ©(n) access-cost for each item).

e MTF and Frequency-count work well in practice.

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 21 /21

Biased search requests: Summary

@ We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

@ For any dynamic reordering heuristic, some sequence will defeat it
(have ©(n) access-cost for each item).

e MTF and Frequency-count work well in practice.

@ For MTF, can also prove theoretical guarantees.

MTF is an online algorithm: Decide based on incomplete information.
Compare it to the best offline algorithm (has complete information).
Here, best offline-algorithm builds optimal static ordering.

Can show: MTF is “2-competitive”: cost(MTF) < 2 - cost(OPT).

vVYyYVvYey

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 21 /21

Biased search requests: Summary

@ We are unlikely to know the access-probabilities of items, so optimal
static order is mostly of theoretical interest.

@ For any dynamic reordering heuristic, some sequence will defeat it
(have ©(n) access-cost for each item).

e MTF and Frequency-count work well in practice.

@ For MTF, can also prove theoretical guarantees.

MTF is an online algorithm: Decide based on incomplete information.
Compare it to the best offline algorithm (has complete information).
Here, best offline-algorithm builds optimal static ordering.

Can show: MTF is “2-competitive”: cost(MTF) < 2 - cost(OPT).

vVYyYVvYey

@ There is very little overhead for MTF and other strategies; they
should be applied whenever unordered lists or arrays are used
(— Hashing, text compression).

A. Jamshidpey, E. Schost (CS-UW) CS240 — Module 5 Spring 2025 21 /21

	Dictionaries with Lists revisited
	Dictionary ADT: Implementations thus far
	Dictionary ADT: Implementations thus far

	Skip Lists
	Towards skip lists
	Skip lists
	Skip lists
	Skip lists: Search
	Skip list search: Example
	Skip list: Deletion
	Skip list deletion: Example
	Skip lists: Insertion
	Skip list insertion: Example
	Skip list insert: Example 2
	Skip list: Insertion
	Skip lists: Analysis
	Skip lists: Summary

	Biased Search Requests
	Biased search request

	Optimal Static Ordering
	Optimal static ordering
	Optimal static ordering

	Dynamic Ordering: MTF
	Dynamic ordering: MTF
	Dynamic ordering: Other ideas
	Biased search requests: Summary

