
University of Waterloo

CS240 - Winter 2021
Assignment 1

There are written questions and a programming question in this assignment.

• the deadline for all written questions, from Problems 1 to 6 inclusive, is Wednes-
day January 27, 5pm;

• the deadline to submit your file kWayMergeSort.cpp from Problem 7 is Wednesday
February 3, 5pm.

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration (AID) before you start working on the assessment and
submit it before the deadline of January 27 along with your answers to the assignment;
i.e. read, sign and submit A01-AID.txt now or as soon as possible. The agreement
will indicate what you must do to ensure the integrity of your grade. If you are having
difficulties with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time
or the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240/w21/guidelines/guidelines.

pdf for guidelines on submission. Each written question solution must be submit-
ted individually to MarkUs as a PDF with the corresponding file names: a1q1.pdf,
a1q2.pdf, . . . , a1q6.pdf.

It is a good idea to submit questions as you go so you aren’t trying to create sev-
eral PDF files at the last minute. Remember, late assignments will not be marked
but can be submitted to MarkUs after the deadline for feedback if you email
cs240@uwaterloo.ca and let the ISAs know to look for it.

Logarithms are in base 2, if not mentioned otherwise.

Problem 1 [3+3+3 marks]

Provide a complete proof of the following statements from first principles (i.e., using the
original definitions of order notation).

a) 12n4 − (log(n))4 ∈ O(n4)

b) 12n4 − (log(n))4 ∈ Ω(n4)

c) 2n ∈ o(3n)

1

http://www.student.cs.uwaterloo.ca/~cs240/w21/guidelines/guidelines.pdf
http://www.student.cs.uwaterloo.ca/~cs240/w21/guidelines/guidelines.pdf


Problem 2 [3+3+3 marks]

For each pair of the following functions, fill in the correct asymptotic notation among Θ, o,
and ω in the statement f(n) ∈ t(g(n)). Provide a brief justification of your answers. In
your justification you may use any relationship or technique that is described in class.

a) f(n) = (log(n))3 + (log(n))2, g(n) = (log(n))3

b) f(n) = 3n, g(n) = 3n+log(n)

c) f(n) = n3(5 + sin(n)), g(n) = n3

Problem 3 [3+4+4 marks]

Analyze the following pieces of pseudocode and give a tight (Θ) bound on the running time
as a function of n. Show your work and justify your answers (in all cases, n is assumed to
be a positive integer).

a) s = 0

for i = 1 to n * n do

for j = 1 to i * i * i do

s = s + 1

b) p = 1

t = 2

s = 0

for i = 1 to n do

for j = 1 to p do

s = s + 1

p = p * t

t = t * t

c) s = n

while (s > 4)

if (s is even)

s = s / 2

else

s = s - 1

Problem 4 [5+5+5 marks]

Prove or disprove each of the following statements. To prove a statement, you should provide
a formal proof that is based on the definitions of the order notations. To disprove a statement,
provide a counterexample and explain it.

2



a) We consider two algorithms, Algo1 and Algo2, that solve the same problem. We
suppose that for any input of size n, Algo1 takes time T1(n) and Algo2 takes time
T2(n). Finally, suppose that T1(n) is in Ω(n3) and T2(n) is in O(n2). Does it imply
that there exists n0 such that for n ≥ n0, Algo2 runs faster than Algo1 on inputs of
size n?

b) We consider two algorithms, Algo1 and Algo2, that solve the same problem. We
suppose that for any input of size n, Algo1 takes time T1(n) and Algo2 takes time
T2(n). Finally, suppose that T1(n) is in Ω(n2) and T2(n) is in O(n3). Does it imply
that there exists n0 such that for n ≥ n0, Algo2 runs faster than Algo1 on inputs of
size n?

c) Consider two functions f(n) and g(n), with f(n) in Θ(g(n)) and both f(n) and g(n)
positive for all n. Does it imply that f(n)n is in Θ(g(n)n)?

Problem 5 [2+4 marks]

Dr. I. M. Smart has invented a new class of functions, denoted O′(g): A function f(n) is in
O′(g(n)) if there is a constant c > 0 such that f(n) ≤ cg(n) for all n > 0. All functions map
positive integers to positive integers.

a) Prove that f(n) ∈ O′(g(n)) implies that f(n) ∈ O(g(n)).

b) Prove that f(n) ∈ O(g(n)) implies that f(n) ∈ O′(g(n)).

Problem 6 [2+6+3+4+4]

We now consider the problem of merging several sorted arrays, and its application to sorting.
In all questions, we only count the number of key comparisons we do, that is, comparisons
between array elements; we are only interested in giving worst-case estimates. In all arrays,
indices start at 0. Do not forget to justify your claims.

a) For the upcoming extension of Merge, we will need a function ArgMin(M), where M
is an array of pairs M [i] = (vi, ei) of length m. It should return an index ` such that
v` is minimum among v0, . . . , vm−1. If we write M [i] = (vi, ei), then we suppose that
we can access vi as vi = M [i].first and ei as ei = M [i].second.

Write the pseudo-code for such a function. For full marks, it should do m− 1 compar-
isons between the elements vi’s (and you should give a brief justification).

b) Consider the following extension of Merge to k-way-Merge(A1, . . . , Ak), which merges
k sorted arrays, for k ≥ 2. Note that even for k = 2, the style of pseudo-code is slightly
different from Merge as given in class (the algorithm is not in-place, for instance).

k-way-Merge(A1, . . . , Ak)

3



1 let I be an array of length k initialized to [0, . . . , 0]

2 let n1, . . . , nk be the lengths of A1, . . . , Ak and n = n1 + · · ·+ nk

3 let A be an array of length n

4 for i = 0, . . . , n− 1

4.1 let M be the array [(Aj[I[j − 1]], j), j ∈ [1, . . . , k] such that I[j − 1] 6= nj]

4.2 let ` = ArgMin(M)

4.3 let j = M [`].second

4.4 A[i] = Aj[I[j − 1]]

4.5 I[j − 1] = I[j − 1] + 1

There was a typo in the assignment as originally posted. Every time we
used I[j], it should have been I[j − 1], as we now do above.

Briefly justify correctness, by explaining what happens in the main loop (2 marks).
Assuming that ArgMin(M) does exactly m− 1 comparisons if M has length m, prove
that in the worst case, k-way-Merge does (k−1)(n−k/2) comparisons (4 marks). Note
that with k = 2, this is n− 1, as expected.

Note: there exist better algorithms for k-way merge.

c) Use k-way-Merge to design an algorithm k-way-MergeSort(A, k) that sorts an array of
length n by splitting it into k subarrays, instead of two for MergeSort (the subarrays
should have lengths that generalize those used in MergeSort). The result should be
written in A. Here, k is an integer in 2, . . . , n.

In the pseudo-code (and the implementation, see below), you do not need to use the
tricks showed in class (where we avoided creating new arrays whenever possible).

d) For the analysis of k-way-MergeSort, we do the following approximation: instead of
(k−1)(n−k/2) comparisons in the worst case, suppose that k-way-Merge always does
(k− 1)n comparisons (the missing terms do not affect the total too much). Under this
assumption, give the exact number of comparisons in k-way-MergeSort, assuming that
n is a power of k.

e) If A has length n, what does k-way-MergeSort(A, n) remind you of? In this case, what
is the bound you obtained in the previous question?

Problem 7 Programming question [12 marks]

Submission deadline for this question is Wednesday February 3, 5pm.
Implement k-way-Merge and k-way-MergeSort from the previous problem to sort arrays

of integers. For your arrays, you will use C++ vectors; you may use push back.
We give you (on the assignment webpage) a starter file kWayMergeSort.cpp. You can

compile it (using the c++17 standard), but notice that the bodies of the functions kWayMerge,

4



split and kWayMergeSort are empty; do not change their signatures. You should complete
this file and submit it once you are done (you can write new functions).

The main function reads lines from cin until it sees an EOF (you can assume that each line
contains a single integer written in base 10). The first integer is k, the others are the numbers
to sort. The main function prints the array, calls kWayMergeSort (which does nothing for
the moment), and prints the array after execution. We also provide a sample input / output
(you can pipe input1.txt into your program; once everything is implemented, you should
obtain what is in output1.txt). Do not change anything in the main function you submit
(in particular, leave the #ifndef and #endif we put there).

5


