
University of Waterloo

CS240 - Winter 2021
Assignment 2

There are written questions and a programming question in this assignment.

• the deadline for all written questions, from Problems 1 to 6 inclusive, is Wednes-
day February 10, 5pm;

• the deadline to submit your file kWayMergeSort.cpp from Problem 7 is Wednesday
February 24, 5pm.

The integrity of the grade you receive in this course is very important to you and the
University of Waterloo. As part of every assessment in this course you must read and sign
an Academic Integrity Declaration (AID) before you start working on the assessment and
submit it before the deadline of February 10 along with your answers to the assignment;
i.e. read, sign and submit A02-AID.txt now or as soon as possible. The agreement
will indicate what you must do to ensure the integrity of your grade. If you are having
difficulties with the assignment, course staff are there to help (provided it isn’t last minute).

The Academic Integrity Declaration must be signed and submitted on time
or the assessment will not be marked.

Please read http://www.student.cs.uwaterloo.ca/~cs240/w21/guidelines/guidelines.

pdf for guidelines on submission. Each written question solution must be submit-
ted individually to MarkUs as a PDF with the corresponding file names: a2q1.pdf,
a2q2.pdf, . . . , a2q6.pdf.

It is a good idea to submit questions as you go so you aren’t trying to create sev-
eral PDF files at the last minute. Remember, late assignments will not be marked
but can be submitted to MarkUs after the deadline for feedback if you email
cs240@uwaterloo.ca and let the ISAs know to look for it.

Notes:

• Logarithms are in base 2, if not mentioned otherwise.

• If you use MSD or LSD radix sort in this assignment, you are free to chose any value for
radix R you wish. If you chose radix R other than 10 (standard decimal representation),
you must account for the time it takes to transform a number in decimal representation
to base R.

Problem 1 [2 + 4 + 4 marks]

a) Let H be a max-heap of size 13 with unique elements. On which level(s) of the heap
can the 3rd largest item be located? On which level(s) of the heap can the smallest
item be located? Recall that the topmost level in the heap is 0.
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b) Module 2 describes an implementation of heapify that calls fix-down for array indices in
non-increasing order from parent(last(n)) down to 0. Consider badHeapify which calls
fix-down on the same array indices, but in the reverse order. Prove that the algorithm
below is incorrect. To prove this, provide an array A of size 6 such that badHeapify(A)
fails to put A in heap order. Draw the corresponding binary tree for output array A
and explain why this tree is not a heap. Assume max-heap. Thus the order of fix-down
operations is critical for the correctness of the heapify algorithm.

BadHeapify(A)
A: an array
1. n← A.size()
2. for i← 0 to parent(last(n))
3. fix-down(A,n, i)

c) Suppose H is a max-heap storing keys. Assume that the heap is implemented as a
binary tree. Write an algorithm HeapSearch(v, k) that takes as an input the root node
of the heap v, and a key k and returns the node of the heap storing k, if k is present
in the heap, or NULL if k is not in the heap. Let s be the number of keys in the heap
that are larger than k. Your algorithm must have complexity O(1 + s).

Problem 2 [5 marks]

You are given an array A of size n storing integers. Write an algorithm reorder(A) that
reorders the elements of the array so that odd numbers are in odd positions while even
numbers are in even positions. If there are more even elements than odd ones in A (or vice-
versa) then those additional elements should be placed at the end of the array. For example,
with an initial array A = [47, 50, 78, 76, 7, 60] the result could be: A = [50, 47, 78, 7, 76, 60].
Your algorithm must be in-place and must run in O(n) time.

Problem 3 [4 + 4 marks]

Consider the algorithm below, where coinF lip() returns an integer uniformly sampled from
{0, 1}.
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HalfMin(A,m)
A: an array A of size n, 0 ≤ m < n
1. if m = 0 return A[0]
2. middle = m/2
3. a← A[middle]
4. i← middle+ 1
5. while i ≤ m
6. if A[i] < a
7. a = A[i]
8. i← i+ 1
9. if coinF lip() = 0
10. return a
11. else
12. b = HalfMin(A,m/2)
13. return min{a, b}

a) Derive the recurrence equation T (n) for computing the expected number of compar-
isons of elements in array A (i.e. comparisons at line 6) during the execution of
HalfMin(A, n− 1).

b) Solve the recurrence equation you derived in part (a). You can assume divisibility as
convenient.

Problem 4 [4+3] marks

You have found a treasure chest filled with n ≥ 3 coins. Exactly 2 coins are counterfeit, the
rest are genuine. All genuine coins weigh the same and the two counterfeit coins weigh the
same, but a counterfeit coin weighs less than a genuine coin. Your task is to separate the
genuine coins from the counterfeit coins. To accomplish this you will compare the weight
of pairs of subsets of the coins using a balance scale. The outcome of one weighing will
determine that each subset of coins weighs the same, or that one or the other subset of coins
weighs more.

a) Give a precise (not big-Omega) lower bound for the number of weighings required
in the worst case to determine which coins are genuine and which are counterfeit for
n ≥ 3. Briefly justify. Bounds in o(log n) will not be eligible for partial credit.

b) Describe an algorithm called FindGenuine to determine the genuine coins when n = 4.
Use the names C1, C2, C3, C4 for the four coins, and the function

CompareWeight ({first subset; second subset}) ,
which returns 1 if first subset weighs more, 0 if both subsets weigh the same and −1 if
second subset weighs more. Your function should return the set of genuine coins. Give
an exact worst-case analysis of the number of weightings required by your algorithm.
For full marks, this should match exactly the lower bound from Part (a).

3



Problem 5 [6 marks]

Let A[0...n−1] be an unsorted array of positive integers, in the range of (0, ..., n5). Entries in
A are not necessarily unique. Design an algorithm that tests whether there are two numbers
in A that are exactly ten apart, i.e. |A[i]−A[j]| = 10 for some indexes i, j ∈ {0, 1, ...n− 1}.
For example, the algorithm should return “yes” if the array is A = [4, 1, 10, 6, 5, 11], because
numbers 1 and 11 are 10 units apart. It should return “no” on A = [10, 5, 13, 1, 14, 2]. The
worst-case run-time of your algorithm must be O(n). You can use O(n) additional space.
Describe the idea of your algorithm in plain language (you may also give pseudo-code if you
wish), and briefly justify correctness.

Problem 6 [1+2+2+(4)+4 marks]

In this problem we will look at an alternative average case analysis for quicksort1. Recall
that in this version of quicksort, the last array element is the pivot. Assume that the input
array A is of size n and contains all distinct integers in the range form 0 to n − 1. Instead
of Hoare’s partition, we use the first version of partition from module03, which is stable:
if a and b stay in the same subarray after partition, then their order is the same as before
partition. For example, array A = [4, 1, 3, 0, 2] is partitioned into [1, 0] and [4, 3]. Recall that
running time of quicksort1 is proportional to the number of comparisons performed during
partition. We will derive O(n log n) bound in the average case by counting average number
of comparisons.

a) Let A = [4, 2, 5, 0, 6, 1, 3]. List all the pivots for quicksort1, in the order of their
occurrence.

b) Let A = [4, 2, 5, 0, 6, 1, 3]. During the execution of quicksort1 on this array, will 1 be
compared to 6? Will 4 be compared to 6?

c) Let n = 4. List all permutations of the input for which quicksort1 will compare 1 to
3. You can use wildcard ’*’ to denote a set of inputs. For example [∗, ∗, ∗, 2] denotes
a subset of inputs where the last element is 2 and all other elements are in arbitrary
order. Do you notice any pattern to these permutations? Pay attention to where 2,
the only element between 1 and 3, is positioned.

d) (bonus) Let 0 ≤ i < j < n. Prove that there are 2n!
j−i+1

permutations where i will be
compared to j.

e) Show that the average number of comparisons in quicksort1 over all input instances is
O(n log n). You can use the result from (d) even if you did not prove it and the fact
that

∑i=k
i=1

1
i
≤ log k + 1.

Problem 7 Programming question [11+1 marks]

Submission deadline for this question is Wednesday, February 24, 5pm.
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MSDRadixSort has a disadvantage of many recursive calls. We can modify MSDRadixSort

to stop recursing once the subarray size gets sufficiently small, and run insertion sort at the
end of your algorithm. For this problem, you are to implement this modified version of
MSDRadixSort. Your method should stop making recursive calls when the current array
size is smaller than or equal to threshold. Note threshold=1 means standard, unmodified
MSDRadixSort.

You may use C++ vectors and any member functions for vectors. No other std library
data structures are allowed. You are not allowed to use any built-in functions for sorting.

We give you (on the assignment webpage) a starter file MSDRadixInsertionSort.cpp.
You can compile it (using the c++17 standard), but notice that the body of the function
MSDSort is empty. Do not change its signature. You should complete this file and submit it
once you are done (you can write new functions).

Function MSDSort takes as an input a vector A of unsigned long integers to sort, integer m
which specifies the maximum number of digits in any number in array A (set to 10 currently),
integers l and r which specify between which array indexes, inclusively, to sort, d which is
the next digit to sort by (leading digit is 0), threshold which is used to stop recursing, and
finally, total num calls, an integer (passed by reference) which tracks the total number of
calls to MSDRadixSort. Your implementation of MSDRadixSort should set total num calls

to the correct number. For example, on array A[123, 232, 021, 320, 210, 230, 101]

and with m=3, total num calls = 9.
The main function reads from cin the number of integers to sort on the first line, the

value of parameter threshold on the second line, and then the integers to sort written on
a separate lines. You can assume that each line contains a single integer written in base 10.
The main function calls MSDRadixSort (which does nothing for the moment), and prints the
array after execution, and the value of total num calls on the last line. We also provide
a sample input / output (you can pipe input1.txt into your program; once everything is
implemented, you should obtain what is in output1.txt). Do not change anything in the
main function you submit (in particular, leave the #ifndef and #endif we put there).

Run your program on a randomly generated array of size 100, 000 for each of threshold ∈
{1, 5, 10, 50, 100, 1000, 10000}. Use the included function getRandomArray to generate a
random array. In the main function, you can set read input from cin to false to switch
from reading from cin to generating a random array. Note and report the running times in
each case. What is the optimal value of threshold? Submit the results of this experiment
in file ’experiment.pdf’.

Programming part is worth 11 marks. The experimental plots are worth 1 mark.
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