Module 2: Priority Queues

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

References: Sedgewick 9.1-9.4
Outline

1. Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • *PQ-sort* and *Heapsort*
 • Summary
Outline

Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Summary
Abstract Data Types

Abstract Data Type (ADT): A description of information and a collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
- How the information is stored (data structure)
- How the operations are performed (algorithms)
Stack ADT

Stack: an ADT consisting of a collection of items with operations:

- **push:** inserting an item
- **pop:** removing the most recently inserted item

Items are removed in LIFO (**last-in first-out**) order. Items enter the stack at the **top** and are removed from the **top**.

We can have extra operations: **size**, **isEmpty**, and **top**

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT

- using arrays
- using linked lists
Queue ADT

Queue: an ADT consisting of a collection of items with operations:

- enqueue: inserting an item
- dequeue: removing the least recently inserted item

Items are removed in FIFO (first-in first-out) order.
Items enter the queue at the rear and are removed from the front.
We can have extra operations: size, isEmpty, and front

Applications: Waiting lines, printer queues

Realizations of Queue ADT

- using (circular) arrays
- using linked lists
Outline

1 Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • PQ-sort and Heapsort
 • Summary
Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a priority) with operations

- **insert**: inserting an item tagged with a priority
- **deleteMax**: removing the item of *highest* priority

deleteMax is also called *extractMax* or *getmax*.

The priority is also called *key*.

The above definition is for a **maximum-oriented** priority queue. A **minimum-oriented** priority queue is defined in the natural way, replacing operation *deleteMax* by *deleteMin*.

Applications: typical “todo” list, simulation systems, sorting
Using a Priority Queue to Sort

\[\text{PQ-Sort}(A[0..n-1]) \]
1. initialize \(PQ \) to an empty priority queue
2. for \(k \leftarrow 0 \) to \(n-1 \) do
3. \(PQ.insert(A[k], A[k]) \) (priority and item are equal to \(A[k] \))
4. for \(k \leftarrow n-1 \) down to 0 do
5. \(A[k] \leftarrow PQ.deleteMax() \)

- run-time \(O(\sum_{0 \leq i < n} \text{insert}(i) + \sum_{0 \leq i < n} \text{deleteMax}(i)) \)
- depends on how we implement the priority queue
Realizations of Priority Queues

Realization 1: unsorted arrays

- *insert*: $O(1)$
- *deleteMax*: $O(n)$

Note: We assume **dynamic arrays**, i.e., expand by doubling as needed. (Amortized over all insertions this takes $O(1)$ extra time.)

Using unsorted linked lists is identical.

PQ-sort with this realization yields *selection sort*, so runtime is

$$O\left(\sum_{i<n} i\right) = O(n^2)$$
Realizations of Priority Queues

Realization 2: sorted arrays

- **insert**: $O(n)$
- **deleteMax**: $O(1)$

Using sorted linked lists is identical.

PQ-sort with this realization yields *insertion sort*, runtime is

$$O\left(\sum_{i<n} i\right) = O(n^2)$$
Outline

Priority Queues
- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Summary
Realization 3: Heaps

A (binary) heap is a certain type of binary tree.

You should know:

- A binary tree is either
 - empty, or
 - consists of three parts:
 - a node and two binary trees (left subtree and right subtree).
- Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.
- Any binary tree with n nodes has height at least $\log(n + 1) - 1 \in \Omega(\log n)$.

Heaps – Definition

A **heap** is a binary tree with the following two properties:

1. **Structural Property**: All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are left-justified.

2. **Heap-order Property**: For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is *max-oriented binary heap*.

Lemma: The height of a heap with n nodes is $\Theta(\log n)$.
In our examples we only show the priorities, and we show them directly in the node. A more accurate picture would be (priority = 50, <other info>).
Storing Heaps in Arrays

Heaps should *not* be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in $A[0]$ and continue with elements *level-by-level* from top to bottom, in each level left-to-right.
Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:

- the root node is at index 0
 (We use “node” and “index” interchangeably in this implementation.)
- the left child of node i (if it exists) is node $2i + 1$
- the right child of node i (if it exists) is node $2i + 2$
- the parent of node i (if it exists) is node $\lfloor \frac{i-1}{2} \rfloor$
- the last node is $n - 1$

We should hide implementation details using helper-functions!

- functions root(), parent(i), last(n), etc.
Outline

1 Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • \textit{PQ-sort} and \textit{Heapsort}
 • Summary
Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a fix-up:

 \[\text{fix-up}(A, k)\]
 \[k: \text{an index corresponding to a node of the heap}\]
 \[1. \quad \textbf{while} \ parent(k) \text{ exists and } A[parent(k)] < A[k] \textbf{ do}\]
 \[2. \quad \text{swap } A[k] \text{ and } A[parent(k)]\]
 \[3. \quad k \leftarrow parent(k)\]

The new item “bubbles up” until it reaches its correct place in the heap.

Time: \(O(\text{height of heap}) = O(\log n)\).
fix-up example

```
      50
     /\  \
    29 34
   /   /  \
  27   15 8 10
 /     /  \
23     26  8
```

deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a fix-down:

```plaintext
fix-down(A, n, k)
A: an array that stores a heap of size n
k: an index corresponding to a node of the heap
1. while k is not a leaf do
2. // Find the child with the larger key
3. j ← left child of k
4. if (j is not last(n) and A[j + 1] > A[j])
5. j ← j + 1
7. swap A[j] and A[k]
8. k ← j
```

Time: $O(\text{height of heap}) = O(\log n)$.
deleteMax example

```
      50
     / \  /
   48  34  8
 / \    \  /  \
27  29  10  15
|    |    |    |
23   26   8  10
```

Biedl, Schost, Veksler (SCS, UW)
Priority Queue Realization Using Heaps

- Store items in array A and globally keep track of $size$

$$insert(x)$$
1. increase $size$
2. $\ell \leftarrow last(size)$
3. $A[\ell] \leftarrow x$
4. $fix-up(A, \ell)$

$$deleteMax()$$
1. $\ell \leftarrow last(size)$
2. $swap A[root()]$ and $A[\ell]$
3. decrease $size$
4. $fix-down(A, size, root())$
5. return $A[\ell]$

$insert$ and $deleteMax$: $O(\log n)$
1 Priority Queues

- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- \textit{PQ-sort} and \textit{Heapsort}
- Summary
Sorting using heaps

- Using the binary-heaps implementation of PQs, we obtain:

```plaintext
PQsortWithHeaps(A)
1. initialize H to an empty heap
2. for k ← 0 to n − 1 do
3.     H.insert(A[k]) (we just insert keys, no items)
4. for k ← n − 1 down to 0 do
5.     A[k] ← H.deleteMax()
```

- Recall: runtime is

\[
O(\sum_{0 \leq i < n} \text{insert}(i) + \sum_{0 \leq i < n} \text{deleteMax}(i))
\]

- both operations run in \(O(\log n)\) time for heaps

\(\leadsto PQ-Ssr\) using heaps takes \(O(n \log n)\) time.

- Can improve this with two simple tricks \(\rightarrow \text{Heapsort}\)
 - Heaps can be built faster if we know all input in advance.
 - Can use the same array for input and heap. \(\leadsto O(1)\) auxiliary space!
Building Heaps with Fix-up

Problem: Given n items all at once (in $A[0 \cdots n-1]$) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

```plaintext
simpleHeapBuilding(A)
A: an array
1. initialize $H$ as an empty heap
2. for $i \leftarrow 0$ to size($A$) − 1 do
3. $H.insert(A[i])$
```

This corresponds to doing *fix-ups*

Worst-case running time: $\Theta(n \log n)$ (we proved $O(\)$, $\Omega(\)$ is an exercise)
Building Heaps with Fix-down

Problem: Given \(n \) items all at once (in \(A[0 \cdots n - 1] \)) build a heap containing all of them.

Solution 2: Using *fix-downs* instead:

```
heapify(A)
A: an array
1. \( n \leftarrow A.size() \)
2. for \( i \leftarrow parent(last(n)) \) downto 0 do
3. \( \text{fix-down}(A, n, i) \)
```

A careful analysis yields a worst-case complexity of \(\Theta(n) \).

A heap can be built in linear time.
heapify example
HeapSort

- Idea: *PQ-sort* with heaps.
- But: Use same input-array A for storing heap.

```plaintext
HeapSort(A, n)
1.  // heapify
2.  $n \leftarrow A.size()$
3.  for $i \leftarrow parent(last(n))$ downto 0 do
4.      fix-down(A, n, i)
5.  // repeatedly find maximum
6.  while $n > 1$
7.      // delete the maximum
8.      swap items at $A[root()]$ and $A[last(n)]$
9.      decrease n
10.     fix-down(A, n, root())
```

The for-loop takes $\Theta(n)$ time and the while-loop takes $O(n \log n)$ time.
Heapsort example

Continue with the example from heapify:
Outline

1 Priority Queues
 - Abstract Data Types
 - ADT Priority Queue
 - Binary Heaps
 - Operations in Binary Heaps
 - PQ-sort and Heapsort
 - Summary
Heap summary

- **Binary heap**: A binary tree that satisfies structural property and heap-order property.
- Heaps are one possible realization of ADT PriorityQueue:
 - `insert` takes time $O(\log n)$
 - `deleteMax` takes time $O(\log n)$
 - Also supports `findMax` in time $O(1)$
- A binary heap can be built in linear time.
- **PQ-sort** with binary heaps leads to a sorting algorithm with $O(n \log n)$ worst-case run-time (⇝ HeapSort)
- We have seen here the *max-oriented version* of heaps (the maximum priority is at the root).
- There exists a symmetric *min-oriented version* that supports `insert` and `deleteMin` with the same run-times.
Finding the smallest item

Problem: Find the *kth smallest item* in an array A of n distinct numbers.

Solution 1: Make k passes through the array, deleting the minimum number each time.
Complexity: $\Theta(kn)$.

Solution 2: Sort A, then return $A[k-1]$.
Complexity: $\Theta(n \log n)$.

Solution 3: Scan the array and maintain the k smallest numbers seen so far in a max-heap
Complexity: $\Theta(n \log k)$.

Solution 4: Create a min-heap with $heapify(A)$. Call $deleteMin(A)$ k times.
Complexity: $\Theta(n + k \log n)$.