Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Dictionary ADT: Implementations thus far

A *dictionary* is a collection of key-value pairs (KVPs), supporting operations *search*, *insert*, and *delete*.

Realizations we have seen so far:

- **Unordered array or linked list**: $\Theta(1)$ insert, $\Theta(n)$ search and delete
- **Ordered array**: $\Theta(\log n)$ search, $\Theta(n)$ insert and delete
- **Binary search trees**: $\Theta(\text{height})$ search, insert and delete
- **Balanced BST (AVL trees)**: $\Theta(\log n)$ search, insert, and delete

Improvements/Simplifications?

- **Can show**: The average-case height of binary search trees (over all possible insertion sequences) is $O(\log n)$.
- How can we shift the average-case to expected height via randomization?
Dictionaries with Lists revisited

- Dictionary ADT: Implementations thus far
- Skip Lists
- Re-ordering Items
Skip Lists

A hierarchy \(S \) of ordered linked lists (levels) \(S_0, S_1, \cdots, S_h \):

- Each list \(S_i \) contains the special keys \(-\infty\) and \(+\infty\) (sentinels)
- List \(S_0 \) contains the KVPs of \(S \) in non-decreasing order. (The other lists store only keys, or links to nodes in \(S_0 \).)
- Each list is a subsequence of the previous one, i.e., \(S_0 \supseteq S_1 \supseteq \cdots \supseteq S_h \)
- List \(S_h \) contains only the sentinels; the left sentinel is the root

Each KVP belongs to a tower of nodes

There are (usually) more nodes than keys

The skip list consists of a reference to the topmost left node.

Each node \(p \) has references \(p.after \) and \(p.below \)

![Skip List Diagram](image-url)
Search in Skip Lists
For each level, find **predecessor** (node before where \(k \) would be). This will also be useful for **insert/delete**.

```plaintext
getPredecessors (k)
1. \( p \leftarrow \text{root} \)
2. \( P \leftarrow \text{stack of nodes, initially containing } p \)
3. \( \text{while } p\.below \neq \text{NIL do} \)
   4. \( p \leftarrow p\.below \)
   5. \( \text{while } p\.after\.key < k \text{ do } p \leftarrow p\.after \)
   6. \( P\.push(p) \)
7. \( \text{return } P \)
```

```plaintext
skipList::search (k)
1. \( P \leftarrow \text{getPredecessors}(k) \)
2. \( p_0 \leftarrow P\.top() \ // \text{predecessor of } k \text{ in } S_0 \)
3. \( \text{if } p_0\.after\.key = k \ \text{return } p_0\.after \)
4. \( \text{else return } \text{“not found, but would be after } p_0” \)
```
Example: Search in Skip Lists

Example: $\text{search}(87)$

- S_3: $-\infty$ → ∞
- S_2: $-\infty$ → 65 → ∞
- S_1: $-\infty$ → 37 → 65 → 83 → ∞
- S_0: $-\infty$ → $(23,v)$ → $(37,v)$ → $(44,v)$ → $(65,v)$ → $(69,v)$ → $(79,v)$ → $(83,v)$ → $(87,v)$ → $(94,v)$ → ∞

Key compared with k:
- White

Added to P:
- Gray
Insert in Skip Lists

`skipList::insert(k, v)`

- Randomly repeatedly toss a coin until you get tails
- Let i the number of times the coin came up heads
 - we want k to be in lists S_0, \ldots, S_i.
 - $i \rightarrow \text{height}$ of tower of k
 - $P(\text{tower of key } k \text{ has height } \geq i) = \left(\frac{1}{2}\right)^i$
- Increase height of skip list, if needed, to have $h > i$ levels.
- Use `getPredecessors(k)` to get stack P.
 The top i items of P are the predecessors p_0, p_1, \ldots, p_i of where k should be in each list S_0, S_1, \ldots, S_i
- Insert (k, v) after p_0 in S_0, and k after p_j in S_j for $1 \leq j \leq i$
Example: Insert in Skip Lists

Example: \texttt{skipList::insert}(52, v)
Coin tosses: H, T \Rightarrow i = 1
\texttt{getPredecessors}(52)
Example 2: Insert in Skip Lists

Example: \texttt{skipList::insert}(100, v)
Insert in Skip Lists

```cpp
skipList::insert(k, v)
1. \( P \leftarrow \text{getPredecessors}(k) \)
2. \( \text{for } (i \leftarrow 0; \text{random}(2) = 1; i \leftarrow i+1) \{ \} \)  // random tower height
3. \( \text{while } i \geq P\text{.size()} \)  // increase skip-list height?
4. \( \text{root} \leftarrow \text{new sentinel-only list linked in appropriate} \)
5. \( P\text{.append}(\text{left sentinel of root}) \)
6. \( p \leftarrow P\text{.pop()} \)  // insert \((k, v)\) in \(S_0\)
7. \( z_{\text{below}} \leftarrow \text{new node with } (k, v), \text{inserted after } p \)
8. \( \text{while } i > 0 \)  // insert \(k\) in \(S_1, \ldots, S_i\)
9. \( p \leftarrow P\text{.pop()} \)
10. \( z \leftarrow \text{new node with } k \text{ added after } p \)
11. \( z\text{.below} \leftarrow z_{\text{below}}; z_{\text{below}} \leftarrow z \)
12. \( i \leftarrow i - 1 \)
```
Delete in Skip Lists

It is easy to remove a key since we can find all predecessors. Then eliminate layers if there are multiple ones with only sentinels.

\[
\text{skipList::delete}(k)
\]

1. \(P \leftarrow \text{getPredecessors}(k) \)
2. while \(P \) is non-empty
3. \(p \leftarrow P.\text{pop}() \) // predecessor of \(k \) in some layer
4. if \(p.\text{after} . \text{key} = k \)
5. \(p.\text{after} \leftarrow p.\text{after} . \text{after} \)
6. else break // no more copies of \(k \)
7. \(p \leftarrow \text{left sentinel of the root-list} \)
8. while \(p.\text{below} . \text{after} \) is the \(\infty \)-sentinel
 // the two top lists are both only sentinels, remove one
9. \(p.\text{below} \leftarrow p.\text{below} . \text{below} \)
10. \(p.\text{after} . \text{below} \leftarrow p.\text{after} . \text{below} . \text{below} \)
Example: Delete in Skip Lists

Example: \texttt{skipList::delete}(65)
Analysis of Skip Lists

- Expected **space** usage: $O(n)$
- Expected **height**: $O(\log n)$
- Crucial for all operations:
 - How often do we *drop down* (execute $p \leftarrow p\.below$)?
 - How often do we *scan forward* (execute $p \leftarrow p\.after$)?
- `skipList::search`: $O(\log n)$ expected time
 - # drop-downs = height
 - expected # scan-forwards is ≤ 1 in each level
- `skipList::insert`: $O(\log n)$ expected time
- `skipList::delete`: $O(\log n)$ expected time
Summary of Skip Lists

- $O(n)$ expected space, all operations take $O(\log n)$ expected time.
- As described they are no faster than randomized binary search trees.
- Can show: A biased coin-flip to determine tower-height gives smaller expected run-times.
- Can save links (hence space) by implementing towers as array.

- Then skip lists are fast in practice and simple to implement.
Outline

1. Dictionaries with Lists revisited
 - Dictionary ADT: Implementations thus far
 - Skip Lists
 - Re-ordering Items
Re-ordering Items

- Recall: Unordered list/array implementation of ADT Dictionary
 \(\text{search: } \Theta(n), \text{ insert: } \Theta(1), \text{ delete: } \Theta(1) \) (after a search)

- Lists/arrays are a very simple and popular implementation. Can we do something to make search more effective in practice?

 - No: if items are accessed equally likely
 - Yes: otherwise (we have a probability distribution of the items)
 - Intuition: Frequently accessed items should be in the front.
 - Two cases: Do we know the access distribution beforehand or not?
 - For short lists or extremely unbalanced distributions this may be faster than AVL trees or Skip Lists, and much easier to implement.
Optimal Static Ordering

Example:

<table>
<thead>
<tr>
<th>key</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency of access</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>access-probability</td>
<td>$\frac{2}{26}$</td>
<td>$\frac{8}{26}$</td>
<td>$\frac{1}{26}$</td>
<td>$\frac{10}{26}$</td>
<td>$\frac{5}{26}$</td>
</tr>
</tbody>
</table>

- We count cost i for accessing the key in the ith position.
- Order A, B, C, D, E has expected access cost:
 \[
 \frac{2}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{1}{26} \cdot 3 + \frac{10}{26} \cdot 4 + \frac{5}{26} \cdot 5 = \frac{86}{26} \approx 3.31
 \]
- Order D, B, E, A, C has expected access cost:
 \[
 \frac{10}{26} \cdot 1 + \frac{8}{26} \cdot 2 + \frac{5}{26} \cdot 3 + \frac{2}{26} \cdot 4 + \frac{1}{26} \cdot 5 = \frac{66}{26} \approx 2.54
 \]

- **Claim:** Over all possible static orderings, the one that sorts items by non-increasing access-probability minimizes the expected access cost.
- **Proof Idea:** For any other ordering, exchanging two items that are out-of-order according to their access probabilities makes the total cost decrease.
Dynamic Ordering: MTF

- What if we do not know the access probabilities ahead of time?
- Rule of thumb (temporal locality): A recently accessed item is likely to be used soon again.
- In list: Always insert at the front
- Move-To-Front heuristic (MTF): Upon a successful search, move the accessed item to the front of the list

```
A → B → C → D → E
↓ search(D)
D → A → B → C → E
↓ insert(F)
F → D → A → B → C → E
```

- We can also do MTF on an array, but should then insert and search from the back so that we have room to grow.
Dynamic Ordering: Transpose

Transpose heuristic: Upon a successful search, swap the accessed item with the item immediately preceding it.

\[
\begin{align*}
&A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \\
&\text{↓ search(D)} \\
&A \rightarrow B \rightarrow D \rightarrow C \rightarrow E \\
&\text{↓ insert(F)} \\
&F \rightarrow A \rightarrow B \rightarrow D \rightarrow C \rightarrow E
\end{align*}
\]

Performance of dynamic ordering:
- Transpose does not adapt quickly to changing access patterns.
- MTF works well in practice.
- **Can show:** MTF is “2-competitive”:
 - No more than twice as bad as the optimal static ordering.