Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Range searches

- So far: $\text{search}(k)$ looks for one specific item.
- New operation **RangeSearch**: look for all items that fall within a given range.
 - Input: A range, i.e., an interval $I = (x, x')$
 - It may be open or closed at the ends.
 - Want: Report all KVPs in the dictionary whose key k satisfies $k \in I$

Example:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>17</th>
<th>19</th>
<th>33</th>
<th>45</th>
<th>51</th>
<th>55</th>
<th>59</th>
</tr>
</thead>
</table>

$\text{RangeSearch}(18,45]$ should return $\{19, 33, 45\}$

- Let s be the output-size, i.e., the number of items in the range.
- We need $\Omega(s)$ time simply to report the items.
- Note that sometimes $s = 0$ and sometimes $s = n$; we therefore keep it as a separate parameter when analyzing the run-time.
Range searches in existing dictionary realizations

Unsorted list/array/hash table: Range search requires $\Omega(n)$ time. We have to check for each item explicitly whether it is in the range.

Sorted array: Range search in A can be done in $O(\log n + s)$ time:

Using binary search, find i such that x is at (or would be at) $A[i]$. Using binary search, find i' such that x' is at (or would be at) $A[i']$. Report all items $A[i+1...i'-1]$ Report $A[i]$ and $A[i']$ if they are in range

BST: Range searches can similarly be done in time $O(\text{height} + s)$ time. We will see this in detail later.
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Multi-Dimensional Data

Range searches are of special interest for multi-dimensional data.

Example: flights that leave between 9am and noon, and cost $300-$500

- Each item has \(d \) aspects (coordinates): \((x_0, x_1, \cdots, x_{d-1})\)
- Aspect values \((x_i)\) are numbers
- Each item corresponds to a point in \(d \)-dimensional space
- We concentrate on \(d = 2 \), i.e., points in Euclidean plane
Multi-dimensional Range Search

(Orthogonal) *d*-dimensional range search: Given a *query rectangle* A, find all points that lie within A.

The time for range searches depends on how the points are stored.

- Could store a 1-dimensional dictionary (where the key is some combination of the aspects.)
 Problem: Range search on one aspect is not straightforward
- Could use one dictionary for each aspect
 Problem: inefficient, wastes space
- **Better idea**: Design new data structures specifically for points.
 - Quadtrees
 - kd-trees
 - range-trees

Assumption: Point are in **general position**:
No two x-coordinates or y-coordinates are the same.
- Simplifies presentation; data structures can be generalized.
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Quadtrees

We have \(n \) points \(S = \{ (x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1}) \} \) in the plane.

We need a **bounding box** \(R \): a square containing all points.

- Can find \(R \) by computing minimum and maximum \(x \) and \(y \) values in \(S \)
- The width/height of \(R \) should be a power of 2

Structure (and also how to *build* the quadtree that stores \(S \)):

- Root \(r \) of the quadtree is associated with region \(R \)
- If \(R \) contains 0 or 1 points, then root \(r \) is a leaf that stores point.
- Else *split*: Partition \(R \) into four equal subsquares (**quadrants**) \(R_{NE}, R_{NW}, R_{SW}, R_{SE} \)
- Partition \(S \) into sets \(S_{NE}, S_{NW}, S_{SW}, S_{SE} \) of points in these regions.
 - **Convention**: Points on split lines belong to right/top side
- Recursively build tree \(T_i \) for points \(S_i \) in region \(R_i \) and make them children of the root.
Quadtrees example

```
\begin{itemize}
  \item \( p_0 \)
  \item \( p_1 \)
  \item \( p_2 \)
  \item \( p_3 \)
  \item \( p_4 \)
  \item \( p_5 \)
  \item \( p_6 \)
  \item \( p_7 \)
  \item \( p_8 \)
  \item \( p_9 \)
\end{itemize}

\begin{align*}
  &\left[0, 8\right) \times \left[0, 16\right) \\
  &\left[8, 16\right) \times \left[0, 16\right) \\
  &\left[0, 4\right) \times \left[8, 12\right) \\
\end{align*}

\begin{align*}
  &\left[0, 8\right) \times \left[0, 8\right) \\
  &\left[0, 16\right) \times \left[0, 16\right) \\
\end{align*}

\begin{align*}
  \left[0, 8\right) \times \left[0, 16\right) &
  \left[0, 4\right) \times \left[8, 12\right) \\
\end{align*}

```

Biedl, Schost, Veksler (SCS, UW)

CS240 – Module 8

Winter 2021
Quadtree Dictionary Operations

- **search:** Analogous to binary search trees and tries
- **insert:**
 - Search for the point
 - Split the leaf while there are two points in one region
- **delete:**
 - Search for the point
 - Remove the point
 - If its parent has only one point left: delete parent
 (and recursively all ancestors that have only one point left)
Quadtree Insert example

\[\text{insert}(p_{10}) \]
Quadtree Range Search

QTree::RangeSearch(r ← root, A)

r: The root of a quadtree, A: Query-rectangle
1. \(R \leftarrow \text{region associated with node } r \)
2. \textbf{if} \((R \subseteq A)\) \textbf{then} // inside node
3. \quad \text{report all points below } r; \textbf{return}
4. \textbf{if} \((R \cap A \text{ is empty})\) \textbf{then} // outside node
5. \quad \textbf{return}
6. \quad // The node is a boundary node, recurse
7. \textbf{if} \((r \text{ is a leaf})\) \textbf{then}
8. \quad \(p \leftarrow \text{point stored at } r \)
9. \quad \textbf{if} \(p \text{ is in } A \) \textbf{return} \(p \)
10. \quad \textbf{else return}
11. \quad \textbf{for} each child \(v \) of \(r \) \textbf{do}
12. \quad \quad QTree::RangeSearch(v, A)

Note: We assume here that each node of the quadtree stores the associated square. Alternatively, these could be re-computed during the search (space-time tradeoff).
Quadtree range search example

- Red: Search stopped due to $R \cap A = \emptyset$.
- Green: Search stopped due to $R \subseteq A$.
- Blue: Must continue search in children / evaluate.
Quadtree Analysis

- Crucial for analysis: what is the height of a quadtree?
 - Can have very large height for bad distributions of points

- Spread factor of points S:
 \[
 \beta(S) = \frac{\text{sidelength of } R}{\text{minimum distance between points in } S}
 \]

- Can show: height h of quadtree is in $\Theta(\log \beta(S))$

- Complexity to build initial tree: $\Theta(nh)$ worst-case
- Complexity of range search: $\Theta(nh)$ worst-case even if the answer is \(\emptyset\)
- But in practice much faster.
Quadtree of 1-dimensional points:

```
“Points:”   0   9   12   14   24   26   28
(in base-2) 00000 01001 01100 01110 11000 11010 11100
```

```
00000 01001 01100 01110
```

```
<table>
<thead>
<tr>
<th>0</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
</tr>
</tbody>
</table>

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

```
| 24 | 32 |
| 24 | 28 |
| 11 | 10 |
```

Same as a trie (with splitting stopped once key is unique)

Quadtrees also easily generalize to higher dimensions (octrees, etc.) but are rarely used beyond dimension 3.
Quadtree summary

- Very easy to compute and handle
- No complicated arithmetic, only divisions by 2 (bit-shift!) if the width/height of R is a power of 2
- Space potentially wasteful, but good if points are well-distributed
- Variation: We could stop splitting earlier and allow up to S points in a leaf (for some fixed bound S).
- Variation: Store pixelated images by splitting until each region has the same color.
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
kd-trees

- We have n points $S = \{(x_0, y_0), (x_1, y_1), \cdots, (x_{n-1}, y_{n-1})\}$
- Quadtrees split square into quadrants regardless of where points are.
- (Point-based) kd-tree idea: Split the region such that (roughly) half the point are in each subtree.
- Each node of the kd-tree keeps track of a splitting line in one dimension (2D: either vertical or horizontal).
- **Convention:** Points on split lines belong to right/top side.
- Continue splitting, switching between vertical and horizontal lines, until every point is in a separate region.

 (There are alternatives, e.g., split by the dimension that has better aspect ratios for the resulting regions. No details.)
kd-tree example

For ease of drawing, we will usually not show the associated regions.
Constructing kd-trees

Build kd-tree with initial split by x on points S:

- If $|S| \leq 1$ create a leaf and return.
- Else $X := \text{quick-select}(S, \lfloor \frac{n}{2} \rfloor)$ (select by x-coordinate)
- Partition S by x-coordinate into $S_{x<X}$ and $S_{x\geq X}$
 - $\lfloor \frac{n}{2} \rfloor$ points on one side and $\lceil \frac{n}{2} \rceil$ points on the other.
 (Recall: Points in general position.)
- Create left subtree recursively (splitting by y) for points $S_{x<X}$.
- Create right subtree recursively (splitting by y) for points $S_{x\geq X}$.

Building with initial y-split symmetric.
Constructing kd-trees

Run-time:

- Find X and partition S in $\Theta(n)$ expected time using
 \textit{randomized-quick-select}.
- Both subtrees have $\approx n/2$ points.

\[T^{\text{exp}}(n) = 2T^{\text{exp}}(n/2) + O(n) \quad \text{(sloppy recurrence)} \]

This resolves to $\Theta(n \log n)$ expected time.
- This can be reduced to $\Theta(n \log n)$ \textit{worst-case} time by pre-sorting (no details).

Height: \[h(1) = 0, \quad h(n) \leq h(\lceil n/2 \rceil) + 1. \]
- This resolves to $O(\log n)$ (specifically $\lceil \log n \rceil$).
kd-tree Dictionary Operations

- **search** (for single point): as in binary search tree using indicated coordinate
- **insert**: search, insert as new leaf.
- **delete**: search, remove leaf.

Problem: After insert or delete, the split might no longer be at exact median and the height is no longer guaranteed to be $\lceil \log_2 n \rceil$.

We can maintain $O(\log n)$ height by occasionally re-building entire subtrees. (No details.) But **rangeSearch** will be slower.

kd-trees do not handle insertion/deletion well.
kd-tree Range Search

- Range search is exactly as for quad-trees, except that there are only two children.

```
kdTree::RangeSearch(r ← root, A)
  r: The root of a kd-tree, A: Query-rectangle
  1. R ← region associated with node r
  2. if (R ⊆ A) then report all points below r; return
  3. if (R ∩ A is empty) then return
  4. if (r is a leaf) then
     5. p ← point stored at r
     6. if p is in A return p
     7. else return
  8. for each child v of r do
     9. kdTree::RangeSearch(v, A)
```

- We assume again that each node stores its associated region.
- To save space, we could instead pass the region as a parameter and compute the region for each child using the splitting line.
Red: Search stopped due to $R \cap A = \emptyset$. Green: Search stopped due to $R \subseteq A$.
kd-tree: Range Search Complexity

- The complexity is $O(s + Q(n))$ where
 - s is the output-size
 - $Q(n)$ is the number of “boundary” nodes (blue):
 - $kdTree::RangeSearch$ was called.
 - Neither $R \subseteq A$ nor $R \cap A = \emptyset$

- **Can show:** $Q(n)$ satisfies the following recurrence relation (no details):
 \[
 Q(n) \leq 2Q(n/4) + O(1)
 \]
 This solves to $Q(n) \in O(\sqrt{n})$
 Therefore, the complexity of range search in kd-trees is $O(s + \sqrt{n})$
kd-tree: Higher Dimensions

- **kd-trees for** d-**dimensional space:**
 - At the root the point set is partitioned based on the first coordinate
 - At the subtrees of the root the partition is based on the second coordinate
 - At depth $d - 1$ the partition is based on the last coordinate
 - At depth d we start all over again, partitioning on first coordinate

- **Storage:** $O(n)$
- **Height:** $O(\log n)$
- **Construction time:** $O(n \log n)$
- **Range search time:** $O(s + n^{1-1/d})$

This assumes that d is a constant.
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Towards Range Trees

- Both Quadtrees and kd-trees are intuitive and simple.
- But: both may be very slow for range searches.
- Quadtrees are also potentially wasteful in space.

New idea: Range trees

- Somewhat wasteful in space, but much faster range search.
- **Tree of trees** (a *multi-level* data structure)
2-dimensional Range Trees

Primary structure:
Balanced binary search tree T that stores P and uses x-coordinates as keys.

Each node v of T stores an **associate structure** $T(v)$:
- Let $P(v)$ be all points in subtree of v in T (including point at v)
- $T(v)$ stores $P(v)$ in a balanced binary search tree, using the y-coordinates as key
- Note: v is not necessarily the root of $T(v)$
Range tree example

Not all associate trees are shown.
Range Tree Space Analysis

- Primary tree uses $O(n)$ space.
- Associate tree $T(v)$ uses $O(|P(v)|)$ space
 (where $P(v)$ are the points at descendants of v in T)
- **Key insight:** $w \in P(v)$ means that v is an ancestor of w in T
 - Every node w has $O(\log n)$ ancestors in T
 (Recall that we assume T to be balanced.)
 - Every node w belongs to $O(\log n)$ sets $P(v)$
 - So $\sum_v |P(v)| \leq \sum_w \#\{\text{ancestors of } w\} \in O(n \log n)$

Therefore: A range-tree with n points uses $O(n \log n)$ space.
Range Trees Operations

- **search**: search by x-coordinate in T
- **insert**: First, insert point by x-coordinate into T. Then, walk back up to the root and insert the point by y-coordinate in all associate trees $T(v)$ of nodes v on path to the root.
- **delete**: analogous to insertion

Problem: We want the binary search trees to be balanced.
 - This makes *insert/delete* very slow if we use AVL-trees.
 - (A rotation at v changes $P(v)$ and hence requires a re-build of $T(v)$.)
 - **Solution**: Completely rebuild highly unbalanced subtrees (no details)

- **range-search**: search by x-range in T. Among found points, search by y-range in some associated trees.
- Must understand first: How to do (1-dimensional) range search in binary search tree?
BST Range Search

\[\text{BST::RangeSearch}(r \leftarrow \text{root}, x_1, x_2)\]

\(r\): root of a binary search tree, \(x_1, x_2\): search keys

Returns keys in subtree at \(r\) that are in range \([x_1, x_2]\)

1. \textbf{if } r = \textsc{NIL} \textbf{ then return}
2. \textbf{if } x_1 \leq r.\text{key} \leq x_2 \textbf{ then}
3. \hspace{1em} L \leftarrow \text{BST::RangeSearch}(r.\text{left}, x_1, x_2)
4. \hspace{1em} R \leftarrow \text{BST::RangeSearch}(r.\text{right}, x_1, x_2)
5. \hspace{1em} \textbf{return } L \cup r.\{\text{key}\} \cup R
6. \textbf{if } r.\text{key} < x_1 \textbf{ then}
7. \hspace{1em} \textbf{return } \text{BST::RangeSearch}(r.\text{right}, x_1, x_2)
8. \textbf{if } r.\text{key} > x_2 \textbf{ then}
9. \hspace{1em} \textbf{return } \text{BST::RangeSearch}(r.\text{left}, x_1, x_2)

Keys are reported in in-order, i.e., in sorted order.
BST Range Search example

BST::RangeSearch(T, 28, 43)

Note: Search from 39 was unnecessary: all its descendants are in range.
Search for left boundary x_1: this gives path P_1

Search for right boundary x_2: this gives path P_2

This partitions T into three groups: outside, on, or between the paths.
BST Range Search re-phrased

- **boundary nodes**: nodes in P_1 or P_2
 - For each boundary node, test whether it is in the range.
- **outside nodes**: nodes that are left of P_1 or right of P_2
 - These are *not* in the range, we stop the search at the topmost.
- **inside nodes**: nodes that are right of P_1 and left of P_2
 - We stop the search at the topmost inside node.
 - All descendants of such a node are *in* the range.
 - For a 1d range search, report them.
BST Range Search analysis

Assume that the binary search tree is balanced:

- Search for path P_1: $O(\log n)$
- Search for path P_2: $O(\log n)$
- $O(\log n)$ boundary nodes
- We spend $O(1)$ time on each.

- We spend $O(1)$ time per topmost outside node.
 - They are children of boundary nodes, so this takes $O(\log n)$ time.
- We spend $O(1)$ time per topmost inside node v.
 - They are children of boundary nodes, so this takes $O(\log n)$ time.
- For 1d range search, also report the descendants of v.
 - We have $\sum_{v \text{ topmost inside}} \#\{\text{descendants of } v\} \leq s$ since subtrees of topmost inside nodes are disjoint. So this takes time $O(s)$ overall.

Run-time for 1d range search: $O(\log n + s)$. This is no faster overall, but topmost inside nodes will be important for 2d range search.
Range Trees: Range Search

Range search for $A = [x_1, x_2] \times [y_1, y_2]$ is a two stage process:

- Perform a range search (on the x-coordinates) for the interval $[x_1, x_2]$ in primary tree T ($BST::RangeSearch(T, x_1, x_2)$)
- Get boundary, topmost outside and topmost inside nodes as before.
- For every boundary node, test to see if the corresponding point is within the region A.
- For every topmost inside node v:
 - Let $P(v)$ be the points in the subtree of v in T.
 - We know that all x-coordinates of points in $P(v)$ are within range.
 - Recall: $P(v)$ is stored in $T(v)$.
 - To find points in $P(v)$ where the y-coordinates are within range as well, perform a range search in $T(v)$: $BST::RangeSearch(T(v), y_1, y_2)$
Range tree range search example
Range Trees: Range Search Run-time

- \(O(\log n)\) time to find boundary and topmost inside nodes in primary tree.
- There are \(O(\log n)\) such nodes.
- \(O(\log n + s_v)\) time for each topmost inside node \(v\), where \(s_v\) is the number of points in \(T(v)\) that are reported.
- Two topmost inside nodes have no common point in their trees.
 \(\Rightarrow\) every point is reported in at most one associate structure.
 \(\Rightarrow\) \(\sum_v\) topmost inside \(s_v \leq s\).

Time for range search in range-tree is proportional to

\[
\sum_{v \text{ topmost inside}} (\log n + s_v) \in O(\log^2 n + s)
\]

(There are ways to make this even faster. No details.)
Range Trees: Higher Dimensions

- Range trees can be generalized to d-dimensional space.

<table>
<thead>
<tr>
<th>Space</th>
<th>$O(n (\log n)^{d-1})$</th>
<th>kd-trees: $O(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction time</td>
<td>$O(n (\log n)^d)$</td>
<td>kd-trees: $O(n \log n)$</td>
</tr>
<tr>
<td>Range search time</td>
<td>$O(s + (\log n)^d)$</td>
<td>kd-trees: $O(s + n^{1-1/d})$</td>
</tr>
</tbody>
</table>

(Note: d is considered to be a constant.)

- Space/time trade-off compared to kd-trees.
Outline

1. Range-Searching in Dictionaries for Points
 - Range Searches
 - Multi-Dimensional Data
 - Quadtrees
 - kd-Trees
 - Range Trees
 - Conclusion
Range search data structures summary

- **Quadtrees**
 - simple (also for dynamic set of points)
 - work well only if points evenly distributed
 - wastes space for higher dimensions

- **kd-trees**
 - linear space
 - range search time \(O(\sqrt{n} + s) \)
 - inserts/deletes destroy balance and range search time (no simple fix)

- **range-trees**
 - range search time \(O(\log^2 n + s) \)
 - wastes some space
 - inserts/deletes destroy balance (can fix this with occasional rebuilt)

Convention: Points on split lines belong to right/top side.