Outline

1 External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees
Outline

1. External Memory
 • Motivation
 • Stream-based algorithms
 • External sorting
 • External Dictionaries
 • 2-4 Trees
 • a-b-Trees
 • B-Trees
Different levels of memory

Current architectures:
- registers (very fast, very small)
- cache L1, L2 (still fast, less small)
- main memory
- disk or cloud (slow, very large)

General question: how to adapt our algorithms to take the memory hierarchy into account, avoiding transfers as much as possible?

Observation: Accessing a single location in external memory (e.g. hard disk) automatically loads a whole block (or “page”).
The External-Memory Model (EMM)

external memory – size unbounded

transfer in blocks of B cells (slow)

internal memory – size M

random access (fast)

CPU

New objective: revisit all algorithms/data structures with the objective of minimizing block transfers ("probes", "disk transfers", "page loads")
Outline

1 External Memory
 • Motivation
 • Stream-based algorithms
 • External sorting
 • External Dictionaries
 • 2-4 Trees
 • a-b-Trees
 • B-Trees
Streams and external memory

If input and output are handled via streams, then we automatically use $\Theta\left(\frac{n}{B}\right)$ block transfers.

So can do the following with $\Theta\left(\frac{n}{B}\right)$ block transfers:

- Pattern matching: Karp-Rabin, Knuth-Morris-Pratt, Boyer-Moore (This assumes that pattern P fits into internal memory.)
- Text compression: Huffman, run-length encoding, Lempel-Ziv-Welch
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees
Sorting in external memory

Recall: The sorting problem:
Given an array A of n numbers, put them into sorted order.

Now assume n is huge and A is stored in blocks in external memory.

- Heapsort was optimal in time and space in RAM model
- But: Heapsort accesses A at indices that are far apart
 - typically one block transfer per array access
 - typically $\Theta(n \log n)$ block transfers.

Can we do better?

- Mergesort adapts well to external memory. Recall algorithm:
 - Split input in half
 - Sort each half recursively \rightarrow two sorted parts
 - Merge sorted parts.

Key idea: Merge can be done with streams.
Merge

\[\text{Merge}(S_1, S_2, S) \]

\(S_1, S_2 \): input streams that are in sorted order, \(S \): output stream

1. \textbf{while} \(S_1 \) or \(S_2 \) is not empty \textbf{do}
2. \textbf{if} \((S_1 \text{ is empty}) \) \(S \).append(\(S_2 \).pop())
3. \textbf{else if} \((S_2 \text{ is empty}) \) \(S \).append(\(S_1 \).pop())
4. \textbf{else if} \((S_1 \text{ .top() < S_2 .top()}) \) \(S \).append(\(S_1 \).pop())
5. \textbf{else} \(S \).append(\(S_2 \).pop())

\[\text{Here } B = 5 \]

\[\text{transfer block when empty} \]

\[\text{transfer block when full} \]
Mergesort in external memory

- **Merge** uses streams S_1, S_2, S.
 - Each block in the stream only transferred once.
- So **Merge** takes $\Theta\left(\frac{m}{B}\right)$ block-transfers to merge m elements.
- Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of merging, each round merges n elements.
 - Mergesort uses $O\left(\frac{n}{B} \cdot \log_2 n\right)$ block-transfers.

Not bad, but we can do better.
Towards d-way Mergesort

Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of splitting-and-merging.
Towards d-way Mergesort

Observe: We had space left in internal memory during *merge.*

- We use only three blocks, but typically $M \gg 3B$.
- **Idea:** We could merge d parts at once.
- Here $d \approx \frac{M}{B} - 1$ so that $d+1$ blocks fit into internal memory.
d-way merge

\[
d\text{-way-merge}(S_1, \ldots, S_d, S)
\]

\(S_1, \ldots, S_d\): input streams that are in sorted order, \(S\): output stream

1. \(P \leftarrow \text{empty min-oriented priority queue}\)
2. \(\text{for } i \leftarrow 1 \text{ to } d \text{ do } P.\text{insert}((S_i.\text{top}(), i)) \)
 \(//\) each item in \(P\) keeps track of its input-steam
3. \(\text{while } P \text{ is not empty do}\)
4. \((x, i) \leftarrow P.\text{deleteMin}()\)
5. \(S.\text{append}(S_i.\text{pop}())\)
6. \(\text{if } S_i \text{ is not empty do}\)
7. \(P.\text{insert}((S_i.\text{top}(), i))\)
d-way merge

- We use a *min-oriented* priority queue \(P \) to find the next item to add to the output.
 - This is irrelevant for the number of block transfers.
 - But there is no space-overhead needed for a priority queue.
 (Recall: heaps are typically implemented as arrays.)
 - And with this the run-time (in RAM-model) is \(O(n \log d) \).

- The items in \(P \) store not only the next key but also the index of the stream that contained the item.
 - With this, can efficiently find the stream to reload from.

- We assume \(d \) is such that \(d + 1 \) blocks and \(P \) fit into main memory.
- The number of *block transfers* then is again \(O\left(\frac{n}{B} \right) \).

How does *d-way merge* help to improve external sorting?
Towards d-way Mergesort

Recall: Mergesort uses $\lceil \log_2 n \rceil$ rounds of splitting-and-merging.
Towards d-way Mergesort

Observe: If we split and merge d-ways, there are fewer rounds.

Number of rounds is now $\lceil \log_d n \rceil$

We choose d such that each round uses $\Theta \left(\frac{n}{B} \right)$ block transfers.
(Then the number of block transfers is $\Theta \left(\log_d n \cdot \frac{n}{B} \right)$.)

Two further improvements:

- Proceed bottom-up (while-loops) rather than top-down (recursions).
- Save more rounds by starting immediately with runs of length M.
d-way mergesort

External ($B = 2$):

| 39 | 5 | 28 | 22 | 10 | 33 | 29 | 37 | 8 | 30 | 54 | 40 | 31 | 52 | 21 | 45 | 35 | 11 | 42 | 53 | 2 | 14 | 27 | 9 | 44 | 3 | 32 | 15 | 43 | 2 | 17 | 6 | 46 | 23 | 20 | 1 | 24 | 7 | 18 | 47 | 26 | 16 | 48 | 50 |

Internal ($M = 8$):

1. Create $\frac{n}{M}$ sorted runs of length M. $\Theta\left(\frac{n}{B}\right)$ block transfers
2. Merge the first $d \approx \frac{M}{B} - 1$ sorted runs using d-Way-Merge
3. Keep merging the next runs to reduce the number of runs by a factor of d \Rightarrow one round of merging. $\Theta\left(\frac{n}{B}\right)$ block transfers
4. Keep doing rounds until only one run is left
d-way mergesort

- We have $\log_d\left(\frac{n}{M}\right)$ rounds of merging:
 - $\frac{n}{M}$ runs after initialization
 - $\frac{n}{M} / d$ runs after one round.
 - $\frac{n}{M} / d^k$ runs after k rounds $\Rightarrow k \leq \log_d\left(\frac{n}{M}\right)$.

- We have $O\left(\frac{n}{B}\right)$ block-transfers per round.

- $d \approx \frac{M}{B} - 1$.

\Rightarrow Total # block transfers is proportional to

$$\log_d\left(\frac{n}{M}\right) \cdot \frac{n}{B} \in O\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$$

One can prove lower bounds in the external memory model:

We require $\Omega\left(\log_{M/B}\left(\frac{n}{M}\right) \cdot \frac{n}{B}\right)$ *block transfers in any comparison-based sorting algorithm.*

(The proof is beyond the scope of the course.)

- d-way mergesort is optimal (up to constant factors)!
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - $a-b$-Trees
 - B-Trees
Dictionaries in external memory

Recall: Dictionaries store n KVPs and support search, insert and delete.

- Recall: AVL-trees were optimal in time and space in RAM model
- $\Theta(\log n)$ run-time \Rightarrow $O(\log n)$ block transfers per operation
- But: Inserts happen at varying locations of the tree.
 \leadsto nearby nodes are unlikely to be on the same block
 \leadsto typically $\Theta(\log n)$ block transfers per operation
- We would like to have fewer block transfers.

Better solution: design a tree-structure that guarantees that many nodes on search-paths are within one block.
Idealized structure

Idea: Store subtrees in one block of memory.

- If block can hold subtree of size $b - 1$, then block covers height $\log b$
 \[\Rightarrow \text{Search-path hits } \frac{\Theta(\log n)}{\log b} \text{ blocks } \Rightarrow \Theta(\log_b n) \text{ block-transfers} \]

- Block acts as one node of a *multiway-tree* ($b - 1$ KVPs, b subtrees)
Towards B-trees

- **Idea:** Define *multiway-tree*
 - One node stores many KVPs
 - Always true: $b-1$ KVPs $\iff b$ subtrees
- To allow *insert/delete*, we permit varying numbers of KVPs in nodes
- This gives much smaller height than for AVL-trees
 \Rightarrow fewer block transfers

- Study first one special case: *2-4-trees*
 - Also useful for dictionaries in internal memory
 - May be faster than AVL-trees even in internal memory
Outline

1. External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries

2. 2-4 Trees
 - a-b-Trees
 - B-Trees
2-4 Trees

Structural property: Every node is either
- 1-node: *one KVP* and *two subtrees* (possibly empty), or
- 2-node: *two KVPs* and *three subtrees* (possibly empty), or
- 3-node: *three KVPs* and *four subtrees* (possibly empty).

Order property: The keys at a node are between the keys in the subtrees.
- With this, search is much like in binary search trees.

![Diagram of 2-4 Tree](image)

Another structural property: All empty subtrees are at the same level.
- This is important to ensure small height.
Empty trees do not count towards height
 ▶ This tree has height 1
Easy to show: Height is in $O(\log n)$, where $n = \# \text{ KVPs.}$
 ▶ Layer i has at least 2^i nodes for $i = 0, \ldots, h$
 ▶ Each node has at least one KVP.
2-4 Tree Operations

- Search is similar to BST:
 - Compare search-key to keys at node
 - If not found, recurse in appropriate subtree

Example: $\text{search}(15) \text{ not found}$
2-4 Tree operations

\[24\text{Tree}\text{::search}(k, v \leftarrow \text{root}, p \leftarrow \text{NIL})\]

1. if \(v\) represents empty subtree
2. return “not found, would be in \(p\)”
3. Let \(\langle T_0, k_1, \ldots, k_d, T_d \rangle\) be key-subtree list at \(v\)
4. if \(k \geq k_1\)
5. \(i \leftarrow\) maximal index such that \(k_i \leq k\)
6. if \(k_i = k\)
7. return key-value pair at \(k_i\)
8. else \(24\text{Tree}\text{::search}(k, T_i, v)\)
9. else \(24\text{Tree}\text{::search}(k, T_0, v)\)
Insertion in a 2-4 tree

Example: $\text{insert}(17)$
- Do 24Tree::search and add key and empty subtree at leaf.
- If the leaf had room then we are done.
- Else **overflow**: More keys/subtrees than permitted.
- Resolve overflow by **node splitting**.

![Diagram of a 2-4 tree with key insertions and node splitting](image-url)
2-4 Tree operations

24Tree::insert(k)
1. \(v \leftarrow 24Tree::search(k) \) // leaf where \(k \) should be
2. Add \(k \) and an empty subtree in key-subtree-list of \(v \)
3. \textbf{while} \(v \) has 4 keys (overflow \(\mapsto \) node split)
4. Let \(\langle T_0, k_1, \ldots, k_4, T_4 \rangle \) be key-subtree list at \(v \)
5. \textbf{if} (\(v \) has no parent) create a parent of \(v \) without KVPs
6. \(p \leftarrow \) parent of \(v \)
7. \(v' \leftarrow \) new node with keys \(k_1, k_2 \) and subtrees \(T_0, T_1, T_2 \)
8. \(v'' \leftarrow \) new node with key \(k_4 \) and subtrees \(T_3, T_4 \)
9. Replace \(\langle v \rangle \) by \(\langle v', k_3, v'' \rangle \) in key-subtree-list of \(p \)
10. \(v \leftarrow p \)
Towards 2-4 Tree Deletion

- For deletion, we symmetrically will have to handle **underflow** (too few keys/subtrees)
- Crucial ingredient for this: **immediate sibling**

![2-4 Tree Diagram]

- **Observe**: Any node except the root has an immediate sibling.
2-4 Tree Deletion

Example:

- `Tree::search`, then trade with successor if KVP is not at a leaf.
- If underflow:
 - If immediate sibling has extras, **rotate/transfer**
 - Else **node merge** (this affects the parent!)
Deletion from a 2-4 Tree

\[24\text{Tree}::\text{delete}(k)\]

1. \(v \leftarrow 24\text{Tree}::\text{search}(k)\) // node containing \(k\)
2. \textbf{if} \(v\) is not leaf
3. \hspace{1em} swap \(k\) with its successor \(k'\) and \(v\) with leaf containing \(k'\)
4. \textbf{while} \(v\) has 0 keys (\textit{underflow})
5. \hspace{1em} \textbf{if} parent \(p\) of \(v\) is NIL, delete \(v\) and \textbf{break}
6. \hspace{1em} \textbf{if} \(v\) has immediate sibling \(u\) with 2 or more keys (\textit{transfer/rotate})
7. \hspace{2em} transfer the key of \(u\) that is nearest to \(v\) to \(p\)
8. \hspace{2em} transfer the key of \(p\) between \(u\) and \(v\) to \(v\)
9. \hspace{2em} transfer the subtree of \(u\) that is nearest to \(v\) to \(v\)
10. \hspace{1em} \textbf{break}
11. \hspace{1em} \textbf{else} (\textit{merge & repeat})
12. \hspace{2em} \(u \leftarrow\) immediate sibling of \(v\)
13. \hspace{2em} transfer the key of \(p\) between \(u\) and \(v\) to \(u\)
14. \hspace{2em} transfer the subtree of \(v\) to \(u\)
15. \hspace{1em} delete node \(v\) and set \(v \leftarrow p\)
A 2-4 tree has height $O(\log n)$
- In internal memory, all operations have run-time $O(\log n)$.
- This is no better than AVL-trees in theory.
 (Though 2-4-trees are faster than AVL-trees in practice, especially when converted to binary search trees called red-black trees. No details.)

A 2-4 tree has height $\Omega(\log n)$
- Level i contains at most 4^i nodes
- Each node contains at most 3 KVPs

So not significantly better than AVL-trees w.r.t. block transfers.

But we can generalize the concept to decrease the height.
Outline

1 External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - a-b-Trees
 - B-Trees

Biedl, Schost, Veksler (SCS, UW)
CS240 – Module 11
Winter 2021
a-b-Trees

A 2-4 tree is an *a-b*-tree for $a = 2$ and $b = 4$.

An *a-b-tree* satisfies:

- Each node has at least a subtrees, unless it is the root. The root has at least 2 subtrees.
- Each node has at most b subtrees.
- If a node has d subtrees, then it stores $d−1$ key-value pairs (KVPs).
- Empty subtrees are at the same level.
- The keys in the node are between the keys in the corresponding subtrees.

Requirement: $a \leq \lceil b/2 \rceil = \lfloor (b + 1)/2 \rfloor$.

search, insert, delete then work just like for 2-4 trees, after re-defining underflow/overflow to consider the above constraints.
a-b-tree example

A 3-6-tree
a-b-tree insertion

$\text{insert}(55)$:

- Overflow now means b keys (and $b + 1$ subtrees)
- Node split \Rightarrow new nodes have $\geq \lfloor (b-1)/2 \rfloor$ keys
- Since we required $a \leq \lfloor (b+1)/2 \rfloor$, this is $\geq a-1$ keys as required.
Height of an \(a\)-\(b\)-tree

Recall: \(n = \) numbers of KVPs (*not* the number of nodes)

What is smallest possible number of KVPs in an \(a\)-\(b\)-tree of height-\(h\)?

<table>
<thead>
<tr>
<th>Level</th>
<th>Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\geq 1)</td>
</tr>
<tr>
<td>1</td>
<td>(\geq 2)</td>
</tr>
<tr>
<td>2</td>
<td>(\geq 2a)</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 2a^2)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(h)</td>
<td>(\geq 2a^{h-1})</td>
</tr>
</tbody>
</table>

\[
\text{# nodes} \geq \underbrace{1}_{\text{root: } \geq 1 \text{ KVP}} + \underbrace{\sum_{i=0}^{h-1} 2a^i}_{\text{others: } \geq a-1 \text{ KVPs}}
\]

\[
n = \# \text{KVPs} \geq 1 + (a - 1) \sum_{i=0}^{h-1} 2a^i = 1 + 2(a - 1) \frac{a^h}{a-1} = 1 + 2a^h
\]

Therefore the height of an \(a\)-\(b\)-tree is \(O(\log_a(n)) = O(\log n / \log a)\).
a-b-trees as implementations of dictionaries

Analysis (if entire a-b-tree is stored in internal memory):

- *search*, *insert*, and *delete* each requires visiting $\Theta(\text{height})$ nodes
- Height is $O(\log n / \log a)$.
- Recall: $a \leq \lceil b/2 \rceil$ required for *insert* and *delete*
 \Rightarrow choose $a = \lceil b/2 \rceil$ to minimize the height.
- Work at node can be done in $O(\log b)$ time.

$$
\text{Total cost: } O \left(\frac{\log n}{\log a} \cdot (\log b) \right) = O(\log n \cdot \frac{\log b}{\log b - 1}) = O(\log n)
$$

This is still no better than AVL-trees.

The main motivation for a-b-trees is *external memory*.

Outline

1 External Memory
 - Motivation
 - Stream-based algorithms
 - External sorting
 - External Dictionaries
 - 2-4 Trees
 - $a-b$-Trees
 - B-Trees
B-trees

A **B-tree** is an a-b-tree tailored to the external memory model.

- Every node is one block of memory (of size B).
- b is chosen maximally such that a node with $b-1$ KVPs (hence $b-1$ value-references and b subtree-references) fits into a block.
 - b is called the **order** of the B-tree. Typically $b \in \Theta(B)$.
- a is set to be $\lceil b/2 \rceil$ as before.
B-tree in external memory

Close-up on one node in one block:

In this example: 17 computer-words fit into one block, so the B-tree can have order 6.
B-tree analysis

- Search, insert, and delete each requires visiting $\Theta(\text{height})$ nodes
- Work within a node is done in internal memory \Rightarrow no block-transfer.
- The height is $\Theta(\log_a n) = \Theta(\log_B n)$ (presuming $a = \lceil b/2 \rceil \in \Theta(B))$

So all operations require $\Theta(\log_B n)$ block transfers.
B-tree summary

- All operations require $\Theta(\log_B n)$ block transfers. This is asymptotically optimal.

- In practice, height is a small constant.
 - Say $n = 2^{50}$, and $B = 2^{15}$. So roughly $b = 2^{14}$, $a = 2^{13}$.
 - A B-tree of height 4 would have $\geq 1 + 2a^4 > 2^{50}$ KVPs.
 - So height is 3.

- There are some variations that are even better in practice (no details).

- B-trees are hugely important for storing data bases (⇝ cs48)