1. **String Matching**
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Outline

1. String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Pattern Matching Definition [1]

- Search for a string (pattern) in a large body of text
- $T[0..n-1]$ – The text (or haystack) being searched within
- $P[0..m-1]$ – The pattern (or needle) being searched for
- Strings over alphabet Σ
- Return smallest i such that
 \[P[j] = T[i+j] \quad \text{for} \quad 0 \leq j \leq m-1 \]
- This is the first occurrence of P in T
- If P does not occur in T, return FAIL
- Applications:
 - Information Retrieval (text editors, search engines)
 - Bioinformatics
 - Data Mining
Pattern Matching Definition [2]

Example:
- $T = \text{“Where is he?”}$
- $P_1 = \text{“he”}$
- $P_2 = \text{“who”}$

Definitions:
- **Substring** $T[i..j] \ 0 \leq i \leq j < n$: a string of length $j - i + 1$ which consists of characters $T[i], \ldots T[j]$ in order
- **A prefix of** T: a substring $T[0..i]$ of T for some $0 \leq i < n$
- **A suffix of** T: a substring $T[i..n - 1]$ of T for some $0 \leq i \leq n - 1$
Pattern matching algorithms consist of guesses and checks:

- A **guess** or **shift** is a position i such that P might start at $T[i]$. Valid guesses (initially) are $0 \leq i \leq n - m$.

- A **check** of a guess is a single position j with $0 \leq j < m$ where we compare $T[i + j]$ to $P[j]$. We must perform m checks of a single correct guess, but may make (many) fewer checks of an incorrect guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.
Brute-force Algorithm

Idea: Check every possible guess.

\[
\text{Bruteforce::patternMatching}(T[0..n-1], P[0..m-1])
\]

\[T: \text{String of length } n \text{ (text)} \quad P: \text{String of length } m \text{ (pattern)}\]

1. for \(i \leftarrow 0\) to \(n - m\) do
2. \quad if \(\text{strcmp}(T[i..i+m-1], P) = 0\) then
3. \quad \quad return “found at guess \(i\)”
4. \quad return FAIL

Note: \textit{strcmp} takes \(\Theta(m)\) time.

\[
\text{strcmp}(T[i..i+m-1], P[0..m-1])
\]

1. for \(j \leftarrow 0\) to \(m - 1\) do
2. \quad if \(T[i + j]\) is before \(P[j]\) in \(\Sigma\) then return -1
3. \quad if \(T[i + j]\) is after \(P[j]\) in \(\Sigma\) then return 1
4. \quad return 0
Brute-Force Example

Example: $T = \text{abbbababbbab}, P = \text{abba}$

![Diagram of string comparison]

What is the worst possible input?

$P = a^{m-1}b, T = a^n$

Worst case performance $\Theta((n - m + 1)m)$

This is $\Theta(mn)$ e.g. if $m = n/2.$
How to improve?

More sophisticated algorithms

- Do extra **preprocessing** on the pattern P
 - **Karp-Rabin**
 - **Boyer-Moore**
 - Deterministic finite automata (**DFA**), **KMP**
 - We eliminate guesses based on completed matches and mismatches.

- Do extra **preprocessing** on the text T
 - **Suffix-trees**
 - We create a data structure to find matches easily.
Outline

1. String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Karp-Rabin Fingerprint Algorithm – Idea

Idea: use hashing to eliminate guesses

- Compute hash function for each guess, compare with pattern hash
- If values are unequal, then the guess cannot be an occurrence
- Example: \(P = 5 \ 9 \ 2 \ 6 \ 5, \quad T = 3 \ 1 \ 4 \ 1 \ 5 \ 9 \ 2 \ 6 \ 5 \ 3 \ 5 \)
 - Use standard hash-function: flattening + modular (radix \(R = 10 \)):
 \[
 h(x_0 \ldots x_4) = (x_0 x_1 x_2 x_3 x_4)_{10} \mod 97
 \]
 - \(h(P) = 59265 \ mod \ 97 = 95. \)

\[
\begin{array}{ccccccc}
3 & 1 & 4 & 1 & 5 & 9 & 2 \\
\hline
hash-value 84 & & & & & & \\
\hline
hash-value 94 & & & & & & \\
\hline
hash-value 76 & & & & & & \\
\hline
hash-value 18 & & & & & & \\
\hline
hash-value 95 & & & & & & \\
\end{array}
\]
Karp-Rabin Fingerprint Algorithm – First Attempt

\[Karp-Rabin-Simple::patternMatching(T, P) \]
1. \[h_P \leftarrow h(P[0..m-1]) \]
2. \[\text{for } i \leftarrow 0 \text{ to } n - m \]
3. \[h_T \leftarrow h(T[i..i+m-1]) \]
4. \[\text{if } h_T = h_P \]
5. \[\quad \text{if } \text{strcmp}(T[i..i+m-1], P) = 0 \]
6. \[\quad \text{return } \text{“found at guess } i\text{”} \]
7. \[\text{return } \text{FAIL} \]

- Never misses a match: \(h(T[i..i+m-1]) \neq h(P) \Rightarrow \text{guess } i \text{ is not } P \)
- \(h(T[i..i+m-1]) \) depends on \(m \) characters, so naive computation takes \(\Theta(m) \) time per guess
- Running time is \(\Theta(mn) \) if \(P \) not in \(T \) (how can we improve this?)
Karp-Rabin Fingerprint Algorithm – Fast Update

The initial hashes are called **fingerprints**.
Crucial insight: We can update these fingerprints in constant time.

- Use previous hash to compute next hash
- \(O(1)\) time per hash, except first one

Example:
- Pre-compute: \(10000 \mod 97 = 9\)
- Previous hash: \(41592 \mod 97 = 76\)
- Next hash: \(15926 \mod 97 = ??\)
Karp-Rabin Fingerprint Algorithm – Fast Update

The initial hashes are called **fingerprints**.

Crucial insight: We can update these fingerprints in constant time.

- Use previous hash to compute next hash
- \(O(1)\) time per hash, except first one

Example:

- Pre-compute: \(10000 \mod 97 = 9\)
- Previous hash: \(41592 \mod 97 = 76\)
- Next hash: \(15926 \mod 97 = ??\)

Observe: \(15926 = (41592 - 4 \cdot 10000) \cdot 10 + 6\)

\[
15926 \mod 97 = \left(\frac{41592 \mod 97 - 4 \cdot 10000 \mod 97}{76 \text{ (previous hash)}} \cdot \frac{10000 \mod 97}{9 \text{ (pre-computed)}}\right) \cdot 10 + 6 \mod 97
\]

\[
= \left((76 - 4 \cdot 9) \cdot 10 + 6\right) \mod 97 = 18
\]
Karp-Rabin Fingerprint Algorithm – Conclusion

\[
\text{Karp-Rabin-RollingHash::patternMatching}(T, P)
\]

1. \(M \leftarrow \text{suitable prime number} \)
2. \(h_P \leftarrow h(P[0..m-1]) \)
3. \(h_T \leftarrow h(T[0..m-1]) \)
4. \(s \leftarrow 10^{m-1} \mod M \)
5. \(\text{for } i \leftarrow 0 \text{ to } n - m \)
6. \(\text{if } h_T = h_P \)
7. \(\text{if } \text{strcmp}(T[i..i+m-1], P) = 0 \)
8. \(\text{return } \text{“found at guess } i\text{”} \)
9. \(\text{if } i < n - m \) // compute hash-value for next guess
10. \(h_T \leftarrow ((h_T - T[i] \cdot s) \cdot 10 + T[i+m]) \mod M \)
11. \(\text{return } \text{“FAIL”} \)

- Choose “table size” \(M \) at random to be huge prime
- Expected running time is \(O(m + n) \)
- \(\Theta(mn) \) worst-case, but this is (unbelievably) unlikely
Outline

1 String Matching
 • Introduction
 • Karp-Rabin Algorithm
 • String Matching with Finite Automata
 • Knuth-Morris-Pratt algorithm
 • Boyer-Moore Algorithm
 • Suffix Trees
 • Suffix Arrays
 • Conclusion
String Matching with Finite Automata

Example: Automaton for the pattern $P = \text{ababaca}$

You should be familiar with:
- finite automaton, DFA, NFA, converting NFA to DFA
- transition function δ, states Q, accepting states F
String Matching with Finite Automata

Example: Automaton for the pattern $P = ababaca$

You should be familiar with:
- finite automaton, DFA, NFA, converting NFA to DFA
- transition function δ, states Q, accepting states F

- The above finite automation is an **NFA**
- State q expresses “we have seen $P[0..q-1]$”
 - NFA accepts T if and only if T contains ababaca
 - But evaluating NFAs is very slow.
String matching with DFA

Can show: There exists an equivalent small DFA.

- Easy to test whether P is in T.
- But how do we find the arcs?
- We will not give the details of this since there is an even better automaton.
Outline

1 String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Use a new type of transition \times ("failure"):

- Use this transition only if no other fits.
- Does not consume a character.
- With these rules, computations of the automaton are deterministic.
 (But it is formally not a valid DFA.)
Knuth-Morris-Pratt Motivation

Use a new type of transition \times ("failure"):
- Use this transition only if no other fits.
- Does not consume a character.
- With these rules, computations of the automaton are deterministic. (But it is formally not a valid DFA.)

Can store failure-function in an array $F[0..m-1]$
- The failure arc from state j leads to $F[j-1]$

Given the failure-array, we can easily test whether P is in T:
Automaton accepts T if and only if T contains $ababaca$
Knuth-Morris-Pratt Algorithm

\[\text{KMP::patternMatching}(T, P) \]
1. \(F \leftarrow \text{failureArray}(P) \)
2. \(i \leftarrow 0 \) // current character of \(T \) to parse
3. \(j \leftarrow 0 \) // current state: we have seen \(P[0..j-1] \)
4. \(\text{while } i < n \text{ do} \)
5. \(\text{if } P[j] = T[i] \)
6. \(\text{if } j = m - 1 \)
7. \(\text{return } \text{“found at guess } i - m + 1” \)
8. \(\text{else} \)
9. \(i \leftarrow i + 1 \)
10. \(j \leftarrow j + 1 \)
11. \(\text{else} \) // i.e. \(P[j] \neq T[i] \)
12. \(\text{if } j > 0 \)
13. \(j \leftarrow F[j - 1] \)
14. \(\text{else} \)
15. \(i \leftarrow i + 1 \)
16. \(\text{return } \text{FAIL} \)
String matching with KMP – Example

Example: $T = \text{ababababaca}, \ P = \text{ababaca}$

\[T : \quad \quad a \quad b \quad a \quad b \quad a \quad b \quad a \quad b \quad b \quad c \quad a \quad b \quad a \quad b \quad a \quad b \quad a \quad c \quad a \quad a \]

\[q: \quad \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 3, 4 \quad 2, 0 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

(after reading this character)
String matching with KMP – Failure-function

Assume we reach state $j+1$ and now have mismatch.

- Can eliminate “shift by 1” if $P[1..j] \neq P[0..j-1]$.
- Can eliminate “shift by 2” if $P[1..j]$ does not end with $P[0..j-2]$.
- Generally eliminate guess if that prefix of P is not a suffix of $P[1..j]$.
- So want longest prefix $P[0..\ell-1]$ that is a suffix of $P[1..j]$.
- The ℓ characters of this prefix are matched, so go to state ℓ.

$$F[j] = \text{head of failure-arc from state } j+1$$

$$= \text{length of the longest prefix of } P \text{ that is a suffix of } P[1..j].$$
KMP Failure Array – Example

\(F[j] \) is the length of the longest prefix of \(P \) that is a suffix of \(P[1..j] \).

Consider \(P = \text{ababaca} \)

<table>
<thead>
<tr>
<th>(j)</th>
<th>(P[1..j])</th>
<th>Prefixes of (P)</th>
<th>longest</th>
<th>(F[j])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\Lambda)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(\Lambda)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>(b)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(\Lambda)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(ba)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(a)</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(bab)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(ab)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>(baba)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(aba)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>(babac)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(\Lambda)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(babaca)</td>
<td>(\Lambda, a, ab, aba, abab, ababa, \ldots)</td>
<td>(a)</td>
<td>1</td>
</tr>
</tbody>
</table>

This can clearly be computed in \(O(m^3) \) time, but we can do better!
Computing the Failure Array

\textbf{KMP::failureArray}(P)

\textbf{P:} String of length \(m \) (pattern)

1. \(F[0] \leftarrow 0 \)
2. \(j \leftarrow 1 \) \hspace{1em} // index within parsed text
3. \(\ell \leftarrow 0 \) \hspace{1em} // reached state
4. \textbf{while} \(j < m \) \textbf{do}
5. \hspace{1em} \textbf{if} \ \(P[j] = P[\ell] \)
6. \hspace{2em} \(\ell \leftarrow \ell + 1 \)
7. \hspace{2em} \(F[j] \leftarrow \ell \)
8. \hspace{2em} \(j \leftarrow j + 1 \)
9. \hspace{1em} \textbf{else if} \ \(\ell > 0 \)
10. \hspace{2em} \(\ell \leftarrow F[\ell - 1] \)
11. \hspace{1em} \textbf{else}
12. \hspace{2em} \(F[j] \leftarrow 0 \)
13. \hspace{2em} \(j \leftarrow j + 1 \)

\textbf{Correctness-idea:} \(F[j] \) is defined via pattern matching of \(P \) in \(P[1..j] \).
So KMP uses itself! Already-built parts of \(F[\cdot] \) are used to expand it.
KMP – Runtime

failureArray

- Consider how $2j - \ell$ changes in each iteration of the while loop
 - j and ℓ both increase by 1 \Rightarrow $2j - \ell$ increases
 - ℓ decreases ($F[\ell - 1] < \ell$) \Rightarrow $2j - \ell$ increases
 - j increases \Rightarrow $2j - \ell$ increases

- Initially $2j - \ell \geq 0$, at the end $2j - \ell \leq 2m$
- So no more than $2m$ iterations of the while loop.
- Running time: $\Theta(m)$
KMP – Runtime

failureArray

- Consider how $2j - \ell$ changes in each iteration of the while loop
 - j and ℓ both increase by 1 \Rightarrow $2j - \ell$ increases
 - ℓ decreases ($F[\ell - 1] < \ell$) \Rightarrow $2j - \ell$ increases
 - j increases \Rightarrow $2j - \ell$ increases

- Initially $2j - \ell \geq 0$, at the end $2j - \ell \leq 2m$
- So no more than $2m$ iterations of the while loop.

Running time: $\Theta(m)$

KMP main function

- failureArray can be computed in $\Theta(m)$ time
- Same analysis gives at most $2n$ iterations of the while loop since $2i - j \leq 2n$.
- Running time KMP altogether: $\Theta(n + m)$
Outline

1. String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees
 - Suffix Arrays
 - Conclusion
Boyer-Moore Algorithm

Fastest pattern matching on English text.

Important components:

- **Reverse-order searching**: Compare P with a guess moving backwards. When a mismatch occurs, choose the better of the following two options:
 - **Bad character jumps**: Eliminate guesses based on mismatched characters of T.
 - **Good suffix jumps**: Eliminate guesses based on matched suffix of P.
Forward-searching vs. reverse-searching

\(P: \) aldo
\(T: \) whereiswaldo

Forward-searching:

```
| w | h | e | r | e | i | s | w | a | l | d | o |
```

Reverse-searching:

```
| w | h | e | r | e | i | s | w | a | l | d | o |
```

With forward-searching, no guesses are ruled out.

This bad character heuristic works well with reverse-searching.
Forward-searching vs. reverse-searching

P: aldo
T: whereiswaldo

Forward-searching:

<table>
<thead>
<tr>
<th>w</th>
<th>h</th>
<th>e</th>
<th>r</th>
<th>e</th>
<th>i</th>
<th>s</th>
<th>w</th>
<th>a</th>
<th>l</th>
<th>d</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\[w \text{ does not occur in } P. \]

\[\Rightarrow \text{shift pattern past } w. \]

Reverse-searching:

<table>
<thead>
<tr>
<th>w</th>
<th>h</th>
<th>e</th>
<th>r</th>
<th>e</th>
<th>i</th>
<th>s</th>
<th>w</th>
<th>a</th>
<th>l</th>
<th>d</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>o</td>
<td></td>
</tr>
</tbody>
</table>

\[r \text{ does not occur in } P. \]

\[\Rightarrow \text{shift pattern past } r. \]
Forward-searching vs. reverse-searching

P: aldo
T: whereiswaldo

Forward-searching:

- w does not occur in P.
 - \Rightarrow shift pattern past w.
- h does not occur in P.
 - \Rightarrow shift pattern past h.

Reverse-searching:

- r does not occur in P.
 - \Rightarrow shift pattern past r.
- w does not occur in P.
 - \Rightarrow shift pattern past w.
Forward-searching vs. reverse-searching

\(P: \) aldo
\(T: \) whereiswaldo

Forward-searching:
- \(w \) does not occur in \(P \).
 \(\Rightarrow \) shift pattern past \(w \).
- \(h \) does not occur in \(P \).
 \(\Rightarrow \) shift pattern past \(h \).

With forward-searching, no guesses are ruled out.

Reverse-searching:
- \(r \) does not occur in \(P \).
 \(\Rightarrow \) shift pattern past \(r \).
- \(w \) does not occur in \(P \).
 \(\Rightarrow \) shift pattern past \(w \).

This *bad character heuristic* works well with reverse-searching.
Bad character heuristic details

\[P: \text{paper} \]
\[T: \text{feedallop poorparrots} \]
Bad character heuristic details

\[P: \text{paper} \]
\[T: \text{feed all poor parrots} \]

- Mismatched character in the text is a
Bad character heuristic details

\[P : \text{paper} \]
\[T : \text{feed all poor parrots} \]

- Mismatched character in the text is \(a \)
- Shift the guess until \(a \) in \(P \) aligns with \(a \) in \(T \)
 - All skipped guessed are impossible since they do not match \(a \)
Bad character heuristic details

\(P: \text{paper} \)
\(T: \text{feed all poor parrots} \)

- Mismatched character in the text is \(a \)
- Shift the guess until \(a \) in \(P \) aligns with \(a \) in \(T \)
 - All skipped guessed are impossible since they do not match \(a \)
- Shift the guess until \textit{last} \(p \) in \(P \) aligns with \(p \) in \(T \)
 - Use “last” since we cannot rule out this guess.
Bad character heuristic details

\[P : \text{paper} \]
\[T :
\text{feed all poor parrots} \]

- Mismatched character in the text is \(a \)
- Shift the guess until \(a \) in \(P \) aligns with \(a \) in \(T \)
 - All skipped guesses are impossible since they do not match \(a \)
- Shift the guess until \textit{last} \(p \) in \(P \) aligns with \(p \) in \(T \)
 - Use “last” since we cannot rule out this guess.
- As before, shift completely past \(o \) since \(o \) is not in \(P \).
Bad character heuristic details

\[P : \text{p a p e r} \]
\[T : \text{f e e d a l l p o o r p a r r o t s} \]

- Mismatched character in the text is \(a \)
- Shift the guess until \(a \) in \(P \) aligns with \(a \) in \(T \)
 - All skipped guessed are impossible since they do not match \(a \)
- Shift the guess until \(\text{last p} \) in \(P \) aligns with \(p \) in \(T \)
 - Use “last” since we cannot rule out this guess.
- As before, shift completely past \(o \) since \(o \) is not in \(P \).
- Finding \(r \) does not help \(\Rightarrow \) shift by one unit.
 - Here the other strategy will do better.
Last-Occurrence Array

- Build the last-occurrence array L mapping Σ to integers
- $L[c]$ is the largest index i such that $P[i] = c$
- We will see soon: If c is not in P, then we should set $L[c] = -1$

Pattern: paper

<table>
<thead>
<tr>
<th>char</th>
<th>p</th>
<th>a</th>
<th>e</th>
<th>r</th>
<th>all others</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L[\cdot]$</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>-1</td>
</tr>
</tbody>
</table>

We can build this in time $O(m + |\Sigma|)$ with simple for-loop

```cpp
BoyerMoore::lastOccurrenceArray(P[0..m-1])
1. initialize array $L$ indexed by $\Sigma$ with all $-1$
2. for $j \leftarrow 0$ to $m-1$ do $L[P[j]] \leftarrow j$
3. return $L$
```

- But how should we do the update?
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

"Good" case: $L[c] < j$, so c is left of $P[j]$.

c

text:

\[\text{pattern:} \]

\[L[c] \]

\[j^{\text{old}} \]

\[\text{corresponding index in } T \]

\[i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m - 1) - L[c] \]

\[\Delta_1 = j^{\text{old}} - L[c] \]

\[\Delta_2 = (m - 1) - j^{\text{old}} \]
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

“**Good**” case: $L[c] < j$, so c is left of $P[j]$.

- i_{old}

 text:

 text:

 pattern:

 pattern:

 $L[c]$ j_{old}

 pattern:

 $L[c]$ j_{old}

 pattern:

 $L[c]$ j_{old}

 j_{new}

 j_{new}
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

“Good” case: $L[c] < j$, so c is left of $P[j]$.

- $j^{\text{new}} = m-1$ (we re-start the search from the right end)
- $i^{\text{new}} = \text{corresponding index in } T$. What is it?

\[
\begin{align*}
\text{text:} & & \text{pattern:} \\
& & \begin{array}{cccccccc}
L[c] & j^{\text{old}} & \text{c} & \text{\ldots} & \text{\ldots} & \text{\ldots} & \text{\ldots} & \text{\ldots} & j^{\text{new}} \\
\end{array}
\end{align*}
\]
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

“Good” case: $L[c] < j$, so c is left of $P[j]$.

- $j^\text{new} = m - 1$ (we re-start the search from the right end)
- $i^\text{new} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 = \text{amount that we should shift} = j^\text{old} - L[c]
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

“Good” case: $L[c] < j$, so c is left of $P[j]$.

- $j^{\text{new}} = m-1$ (we re-start the search from the right end)
- $i^{\text{new}} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 = \text{amount that we should shift} = j^{\text{old}} - L[c]$
 - $\Delta_2 = \text{how much we had compared} = (m-1) - j^{\text{old}}$
Bad character heuristic formula

We will always compare $T[i]$ and $P[j]$. How to update at a mismatch?

“Good” case: $L[c] < j$, so c is left of $P[j]$.

- $j^{\text{new}} = m-1$ (we re-start the search from the right end)
- $i^{\text{new}} = \text{corresponding index in } T$. What is it?
 - $\Delta_1 = \text{amount that we should shift} = j^{\text{old}} - L[c]$
 - $\Delta_2 = \text{how much we had compared} = (m-1) - j^{\text{old}}$
 - $i^{\text{new}} = i^{\text{old}} + \Delta_2 + \Delta_1 = i^{\text{old}} + (m-1) - L[c]$
Bad character heuristic formula

Bad case 1: c does not occur in P.

We want to shift past $T[i^{\text{old}}]$, so need $i^{\text{new}} = i^{\text{old}} + m$

What value of $L[c]$ would achieve this automatically?
Bad character heuristic formula

Bad case 1: c does not occur in P.

We want to shift past $T[i^{old}]$, so need $i^{new} = i^{old} + m$

What value of $L[c]$ would achieve this automatically?

- formula was $i^{new} = i^{old} + (m-1) - L[c]$
- set $L[c] := -1$
Bad character heuristic formula

Bad case 2: $L[c] > j$, so c is right of $P[j]$.

![Diagram showing the relationship between j_{old}, j_{new}, Δ_1, Δ_2, and $m-1$.]

- **Bad character heuristic not helpful in this case.**
- **We want to shift by $\Delta_1 := 1$ units**
Bad character heuristic formula

Bad case 2: $L[c] > j$, so c is right of $P[j]$.

\[j^{old} \quad j^{new} \]

\[\Delta_1 \quad \Delta_2 \quad \Delta_1 \]

\[j^{old} \quad m - 1 \]

- Bad character heuristic not helpful in this case.
- We want to shift by $\Delta_1 := 1$ units

\[i^{new} = i^{old} + \Delta_2 + \Delta_1 = i^{old} + 1 + (m - 1) - j^{old} \]
Bad character heuristic formula

Bad case 2: \(L[c] > j \), so \(c \) is right of \(P[j] \).

\[
\begin{array}{ccccccc}
& & & & & & \text{c} \\
\text{i}_{\text{old}} & & & & & & \text{i}_{\text{new}} \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\Delta_1 & & & & \Delta_2 & \Delta_1 \\
\text{j}_{\text{old}} & & & & \text{m} - 1 & \\
\end{array}
\]

- Bad character heuristic not helpful in this case.
- We want to shift by \(\Delta_1 := 1 \) units

\[
i_{\text{new}} = i_{\text{old}} + \Delta_2 + \Delta_1 = i_{\text{old}} + 1 + (m-1) - j_{\text{old}}
\]

Unified formula for all cases:

\[
i_{\text{new}} = i_{\text{old}} + (m-1) - \min\{L[c], j_{\text{old}} - 1\}
\]
Boyer-Moore Algorithm

\[
\text{Boyer-Moore::patternMatching}(T,P)
\]
1. \(L \leftarrow \text{lastOccurrenceArray}(P) \)
2. \(S \leftarrow \text{good suffix array computed from } P \)
3. \(i \leftarrow m - 1, \quad j \leftarrow m - 1 \)
4. \textbf{while } i < n \textbf{ and } j \geq 0 \textbf{ do}
5. \quad \textbf{if } T[i] = P[j]
6. \quad \quad i \leftarrow i - 1
7. \quad \quad j \leftarrow j - 1
8. \quad \textbf{else}
9. \quad \quad i \leftarrow i + m - 1 - \min\{L[T[i]], j - 1, S[j]\}
10. \quad \quad j \leftarrow m - 1
11. \quad \textbf{if } j = -1 \textbf{ return } \text{“found at } T[i+1..i+m]\text{”}
12. \textbf{else return } \text{FAIL}

\(S \) will be explained below.

\textbf{Can show: } ‘j–1’ is not needed in line 9 since \(\min\{L[T[i]], S[j]\} \leq j - 1 \)
Good Suffix Heuristic

$S[j]$ expresses

“since $P[j+1..m-1]$ was matched, how much should we shift?”

\[
\begin{align*}
P: & \quad \text{o n o b o b o} \\
T: & \quad \text{on o o o b o o o o i b b o u n d a r y}
\end{align*}
\]

Do smallest shift so that obo fits in the new guess.

- Doing examples is easy, but the formula is complicated (no details)
- $S[\cdot]$ computable (similar to KMP failure function) in $\Theta(m)$ time.

Summary:
- Boyer-Moore performs very well (even without good suffix heuristic).
- On typical *English text* Boyer-Moore looks at only $\approx 25\%$ of T
- Worst-case run-time for is $O(mn)$, but in practice much faster.
 [There are ways to ensure $O(n)$ run-time. No details.]
Outline

1. **String Matching**
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - **Suffix Trees**
 - Suffix Arrays
 - Conclusion
What if we want to search for many patterns \(P \) within the same fixed text \(T \)?

Idea: Preprocess the text \(T \) rather than the pattern \(P \).

Observation: \(P \) is a substring of \(T \) if and only if \(P \) is a prefix of some suffix of \(T \).

So want to store all suffixes of \(T \) in a trie.

To save space:
- Use a compressed trie.
- Store suffixes implicitly via indices into \(T \).

This is called a **suffix tree**.
Trie of suffixes: Example

$T = \text{bananaban}$ has suffixes

\{\text{bananaban}, \text{ananaban}, \text{nanaban}, \text{anaban}, \text{naban}, \text{aban}, \text{ban}, \text{an}, \text{n}, \Lambda\}
Tries of suffixes

Store suffixes via indices:

\[T = \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text{b} & \text{a} & \text{n} & \text{a} & \text{n} & \text{a} & \text{b} & \text{a} & \text{n} & \$ \\
\end{array} \]
Suffix tree

Suffix tree: Compressed trie of suffixes

\[T = \begin{array}{c}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
b & a & n & a & n & a & b & a & n & \$
\end{array} \]

![Suffix Tree Diagram]

- **Suffix Tree Concept**: A compressed trie of suffixes, where each edge represents a suffix of the string. The tree is constructed by starting with a root node and adding suffixes as paths, merging common prefixes to save space.

- **Example**: The suffix tree for the string "banana$" is shown in the diagram.

- **Key Points**:
 - Edges are labeled with suffixes and children with prefixes.
 - The tree is built to efficiently search for suffixes of the string.

- **Applications**:
 - String matching
 - Pattern recognition
 - Bioinformatics (e.g., DNA sequence analysis)

Biedl, Schost, Veksler (SCS, UW)
CS240 – Module 9
Winter 2021
More on Suffix Trees

Building:

- Text T has n characters and $n + 1$ suffixes.
- We can build the suffix tree by inserting each suffix of T into a compressed trie. This takes time $\Theta(n^2|\Sigma|)$.
- There is a way to build a suffix tree of T in $\Theta(n|\Sigma|)$ time. This is quite complicated and beyond the scope of the course.

Pattern Matching:

- Essentially *search* for P in compressed trie.
 Some changes are needed, since P may only be prefix of stored word.
- Run-time: $O(|\Sigma|m)$.

Summary: Theoretically good, but construction is slow or complicated, and lots of space-overhead \rightsquigarrow rarely used.
Outline

1. String Matching
 - Introduction
 - Karp-Rabin Algorithm
 - String Matching with Finite Automata
 - Knuth-Morris-Pratt algorithm
 - Boyer-Moore Algorithm
 - Suffix Trees

 Suffix Arrays

 - Conclusion
Suffix Arrays

- Relatively recent development (popularized in the 1990s)
- Sacrifice some performance for simplicity:
 - Slightly slower (by a log-factor) than suffix trees.
 - Much easier to build.
 - Much simpler pattern matching.
 - Very little space; only one array.

Idea:

- Store suffixes implicitly (by storing start-indices)
- Store *sorting permutation* of the suffixes of T.
Suffix Array Example

Text T: `bananaban$`

<table>
<thead>
<tr>
<th>i</th>
<th>suffix $T[i..n-1]$</th>
<th>j</th>
<th>$A^s[j]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><code>bananaban$</code></td>
<td>0</td>
<td>$$`</td>
</tr>
<tr>
<td>1</td>
<td><code>ananaban$</code></td>
<td>1</td>
<td><code>aban$</code></td>
</tr>
<tr>
<td>2</td>
<td><code>nanaban$</code></td>
<td>2</td>
<td><code>an$</code></td>
</tr>
<tr>
<td>3</td>
<td><code>anaban$</code></td>
<td>3</td>
<td><code>ananaban$</code></td>
</tr>
<tr>
<td>4</td>
<td><code>naban$</code></td>
<td>4</td>
<td><code>ananaban$</code></td>
</tr>
<tr>
<td>5</td>
<td><code>aban$</code></td>
<td>5</td>
<td><code>ban$</code></td>
</tr>
<tr>
<td>6</td>
<td><code>ban$</code></td>
<td>6</td>
<td><code>bananaban$</code></td>
</tr>
<tr>
<td>7</td>
<td><code>an$</code></td>
<td>7</td>
<td><code>n$</code></td>
</tr>
<tr>
<td>8</td>
<td><code>n$</code></td>
<td>8</td>
<td><code>naban$</code></td>
</tr>
<tr>
<td>9</td>
<td><code>\$</code></td>
<td>9</td>
<td><code>nanaban$</code></td>
</tr>
</tbody>
</table>

Suffix array: [9 5 7 3 1 6 0 8 4 2]
Suffix Array Construction

- Easy to construct using *MSD-Radix-Sort*.
 - Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - n rounds of recursions (have n chars)
 - Each round takes $\Theta(n)$ time (bucket-sort)
Suffix Array Construction

- Easy to construct using **MSD-Radix-Sort**.
 - Fast in practice; suffixes are unlikely to share many leading characters.
 - But worst-case run-time is $\Theta(n^2)$
 - n rounds of recursions (have n chars)
 - Each round takes $\Theta(n)$ time (bucket-sort)

- **Idea:** We do not need n rounds!
 - Consider sub-array after one round.
 - These have same leading char. Ties are broken by rest of words.
 - But rest of words are also suffixes \leadsto sorted elsewhere
 - We can double length of sorted part every round.

 - $O(\log n)$ rounds enough \Rightarrow $O(n \log n)$ run-time

- Construction-algorithm: MSD-radix-sort plus some bookkeeping
 - needs only one extra array
 - easy to implement

- You do not need to know details.
Pattern matching in suffix arrays

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

\[P = \text{ban}: \]

<table>
<thead>
<tr>
<th>(\ell \rightarrow)</th>
<th>(j)</th>
<th>(A^s[j])</th>
<th>(T[A^s[j]..n-1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>aban$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>an$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>anaban$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ananaban$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>ban$</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>bananaban$</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>n$</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>naban$</td>
<td></td>
</tr>
<tr>
<td>(r \rightarrow)</td>
<td>9</td>
<td>2</td>
<td>nanaban$</td>
</tr>
</tbody>
</table>

\(O(\log n) \) comparisons.
Each comparison is \(\text{strcmp}(P, T[A^s[\nu]..A^s[\nu+m-1]]) \) \(O(m) \) time per comparison \(\Rightarrow \) run-time \(O(m \log n) \)
Pattern matching in suffix arrays

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

\[P = \text{ban}: \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(A_s[j])</th>
<th>(T[A_s[j]..n-1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>aban$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>an$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>anaban$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ananaban$</td>
</tr>
<tr>
<td>(\ell \rightarrow)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>(\nu \rightarrow)</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(r \rightarrow)</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>
Pattern matching in suffix arrays

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

\[P = \text{ban:} \]

<table>
<thead>
<tr>
<th>(j)</th>
<th>(A^s[j])</th>
<th>(T[A^s[j]..n-1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>aban$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>an$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>anaban$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ananaban$</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>(\text{ban$ found})</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>bananaban$</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>n$</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>naban$</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>nanaban$</td>
</tr>
</tbody>
</table>

\(O(\log n) \) comparisons. Each comparison is \(\text{strcmp}(P, T[A^s[\nu]..A^s[\nu]+m-1]) \) \(O(m) \) time per comparison \(\Rightarrow \) run-time \(O(m \log n) \)
Pattern matching in suffix arrays

- Suffix array stores suffixes (implicitly) in sorted order.
- **Idea:** apply binary search!

$P = \text{ban}$:

<table>
<thead>
<tr>
<th>j</th>
<th>$A^s[j]$</th>
<th>$T[A^s[j]..n-1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>$$$</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>aban$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>an$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>anaban$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ananaban$</td>
</tr>
</tbody>
</table>

$\nu = \ell$ \rightarrow 5 | 6 | ban$ found |

$r \rightarrow$

6	0	bananaban$
7	8	n$
8	4	naban$
9	2	nanaban$

- $O(\log n)$ comparisons.
- Each comparison is $\text{strcmp}(P, T[A^s[\nu]..A^s[\nu + m - 1]])$
- $O(m)$ time per comparison \Rightarrow **run-time** $O(m \log n)$
Pattern matching in suffix arrays

SuffixArray-search($A^s[0...n−1], P[0..m−1])$

A^s: suffix array of T, P: pattern

1. $ℓ ← 0$, $r ← n−1$
2. **while** ($ℓ < r$)
 3. $ν ← \lfloor \frac{ℓ+r}{2} \rfloor$
 4. $i ← A^s[ν]$ // Suffix is $T[i..n−1]$
 5. $s ← strcmp(T[i..i+m−1], P)$
 6. // Assuming `strcmp` handles “out of bounds” suitably
 7. **if** ($s < 0$) **do** $ℓ ← ν + 1$
 8. **else if** ($s > 0$) **do** $r ← ν − 1$
 9. **else** return “found at guess $T[i..i+m−1]$”
10. **if** `strcmp(T, P, A^s[ℓ], A^s[ℓ]+m−1) = 0`
11. **return** “found at guess $T[ℓ..ℓ+m−1]$”
12. **return** FAIL
Outline

String Matching
- Introduction
- Karp-Rabin Algorithm
- String Matching with Finite Automata
- Knuth-Morris-Pratt algorithm
- Boyer-Moore Algorithm
- Suffix Trees
- Suffix Arrays
- Conclusion
String Matching Conclusion

<table>
<thead>
<tr>
<th></th>
<th>Brute-Force</th>
<th>Karp-Rabin</th>
<th>DFA</th>
<th>Knuth-Morris-Pratt</th>
<th>Boyer-Moore</th>
<th>Suffix Tree</th>
<th>Suffix Array</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preproc.</td>
<td>—</td>
<td>$O(m)$</td>
<td>$O(m</td>
<td>\Sigma</td>
<td>)$</td>
<td>$O(m)$</td>
<td>$O(m+</td>
</tr>
<tr>
<td>Search time</td>
<td>$O(nm)$</td>
<td>$O(n+m)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(n)$ or better</td>
<td>$O(m)$</td>
<td>$O(m \log n)$</td>
</tr>
<tr>
<td>Extra space</td>
<td>—</td>
<td>$O(1)$</td>
<td>$O(m</td>
<td>\Sigma</td>
<td>)$</td>
<td>$O(m)$</td>
<td>$O(m+</td>
</tr>
</tbody>
</table>

- Our algorithms stopped once they have found one occurrence.
- Most of them can be adapted to find *all* occurrences within the same worst-case run-time.