CS 240 – Data Structures and Data Management

Module 2: Priority Queues

T. Biedl É. Schost O. Veksler
Based on lecture notes by many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

References: Sedgewick 9.1-9.4
Outline

Priority Queues
- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- *PQ-sort* and *Heapsort*
- Summary
Outline

1. Priority Queues
 - Abstract Data Types
 - ADT Priority Queue
 - Binary Heaps
 - Operations in Binary Heaps
 - **PQ-sort** and **Heapsort**
 - Summary
Abstract Data Type (ADT): A description of information and a collection of operations on that information.

The information is accessed only through the operations.

We can have various realizations of an ADT, which specify:
- How the information is stored (data structure)
- How the operations are performed (algorithms)
Stack ADT

Stack: an ADT consisting of a collection of items with operations:

- *push:* inserting an item
- *pop:* removing the most recently inserted item

Items are removed in LIFO (*last-in first-out*) order.
Items enter the stack at the *top* and are removed from the *top*.
We can have extra operations: *size*, *isEmpty*, and *top*

Applications: Addresses of recently visited web sites, procedure calls

Realizations of Stack ADT

- using arrays
- using linked lists
Push 3

Push 3

Pop

Push 3

Pop

Pop
Queue ADT

Queue: an ADT consisting of a collection of items with operations:
- *enqueue*: inserting an item
- *dequeue*: removing the least recently inserted item

Items are removed in FIFO (*first-in first-out*) order. Items enter the queue at the *rear* and are removed from the *front*. We can have extra operations: *size*, *isEmpty*, and *front*

Applications: Waiting lines, printer queues

Realizations of Queue ADT
- using (circular) arrays
- using linked lists
enqueue 3

front = 0
rear = 1

enqueue 3

front = 0
rear = 2

enqueue 3

dequeue

front = 1
rear = 2

front = 1
rear = 1

front = 1
rear = 2
Outline

1. Priority Queues
 - Abstract Data Types
 - ADT Priority Queue
 - Binary Heaps
 - Operations in Binary Heaps
 - PQ-sort and Heapsort
 - Summary
Priority Queue ADT

Priority Queue: An ADT consisting of a collection of items (each having a **priority**) with operations

- *insert:* inserting an item tagged with a priority
- *deleteMax:* removing the item of **highest** priority

deleteMax is also called *extractMax* or *getmax.* The priority is also called **key.**

The above definition is for a **maximum-oriented** priority queue. A **minimum-oriented** priority queue is defined in the natural way, replacing operation *deleteMax* by *deleteMin,*

Applications: typical “todo” list, simulation systems, sorting
Using a Priority Queue to Sort

\[A = [3, 9, 1] \]

\[PQ = \begin{pmatrix} 3 & 9 \\ 9 & 1 \end{pmatrix} \]

- delete Max \(\rightarrow 9 \)
 \[A = [3, 9, 9] \]
 \[PQ = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \]

- delete Max \(\rightarrow 3 \)
 \[A = [3, 3, 9] \]
 \[PQ = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \]

- delete Max \(\rightarrow 3 \)
 \[A = [1, 3, 9] \]
 \[PQ = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \]
Using a Priority Queue to Sort

\[\text{PQ-Sort}(A[0..n-1]) \]
1. initialize \(PQ \) to an empty priority queue
2. \(\text{for } k \leftarrow 0 \text{ to } n-1 \text{ do} \)
3. \(\text{PQ}.\text{insert}(A[k], A[k]) \) \(\) (priority and item are equal to \(A[k] \))
4. \(\text{for } k \leftarrow n-1 \text{ down to } 0 \text{ do} \)
5. \(A[k] \leftarrow \text{PQ}.\text{deleteMax}() \)

- run-time \(O(\sum_{0 \leq i < n} \text{insert}(i) + \sum_{0 \leq i < n} \text{deleteMax}(i)) \)
- depends on how we implement the priority queue
Realizations of Priority Queues

Realization 1: unsorted arrays

- **insert:** $O(1)$
- **deleteMax:** $O(n)$

![Diagram](image)

$O(1)$ only if the array is not full!
Realizations of Priority Queues

Realization 1: unsorted arrays

- *insert:* $O(1)$
- *deleteMax:* $O(n)$

Note: We assume **dynamic arrays**, i.e., expand by doubling as needed. (Amortized over all insertions this takes $O(1)$ extra time.)
Suppose we start from a tree of length 1.

We do n insert, $n = 2^k$.

Total cost of inserts

\[
= O\left(\left(\frac{1 + 1 + \cdots + 1}{n \text{ times}} + 1 + 2 + 4 + 8 + \cdots + 2^{k-1} \right) \right)
\]

\[
= O(2^{k-1}) = O(n).
\]
Realizations of Priority Queues

Realization 1: unsorted arrays

- *insert*: $O(1)$
- *deleteMax*: $O(n)$

Note: We assume **dynamic arrays**, i.e., expand by doubling as needed. (Amortized over all insertions this takes $O(1)$ extra time.)

Using unsorted linked lists is identical.

PQ-sort with this realization yields **selection sort**, so runtime is

$$O(\sum_{i<n} i) = O(n^2)$$
Realizations of Priority Queues

Realization 2: sorted arrays

- **insert**: $O(n)$
- **deleteMax**: $O(1)$
Realizations of Priority Queues

Realization 2: sorted arrays

- *insert*: $O(n)$
- *deleteMax*: $O(1)$

Using sorted linked lists is identical.

PQ-sort with this realization yields *insertion sort*, runtime is

$$O\left(\sum_{i<n} i\right) = O(n^2)$$
Outline

1 Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • PQ-sort and Heapsort
 • Summary
Realization 3: Heaps

A **(binary) heap** is a certain type of binary tree.

You should know:

- A **binary tree** is either
 - empty, or
 - consists of three parts: a node and two binary trees (left subtree and right subtree).

- Terminology: root, leaf, parent, child, level, sibling, ancestor, descendant, etc.

- Any binary tree with n nodes has height at least
 \[\log(n + 1) - 1 \in \Omega(\log n). \]

The height of a non-empty tree is the length of the longest path from root to leaf. The height of the empty tree is -1.
Heaps – Definition

A **heap** is a binary tree with the following two properties:

1. **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.

2. **Heap-order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.
Heaps – Definition

A **heap** is a binary tree with the following two properties:

1. **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.

2. **Heap-order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is *max-oriented binary heap*.
Heaps – Definition

A **heap** is a binary tree with the following two properties:

1. **Structural Property:** All the levels of a heap are completely filled, except (possibly) for the last level. The filled items in the last level are *left-justified*.

2. **Heap-order Property:** For any node i, the key of the parent of i is larger than or equal to key of i.

The full name for this is *max-oriented binary heap*.

Lemma: The height of a heap with n nodes is $\Theta(\log n)$.\]
In our examples we only show the priorities, and we show them directly in the node. A more accurate picture would be (priority = 50, <other info>)
For a heap of height $h=3$

1 node at level 0

2 nodes — 1

4 nodes — 2

between 1 and 8 nodes at level 3

Total: between 8 and 15 nodes

For a heap of height h, we have

- at least $1 + 2 + 4 + \ldots + 2^{h-1} + 1 = 2^h - 1 + 1 = 2^h$ nodes
- at most $1 + 2 + 4 + \ldots + 2^h = 2^{h+1} - 1$ nodes
Call n the number of nodes. We get:

\[2^h \leq n \leq 2^{h+1} - 1 \leq 2^{h+1} \] true for any binary tree.

\[
\log_2 n \leq \log_2(n) \leq h + 1
\]

\[
\frac{\log_2(n) - 1}{h} \leq \log_2(n) - h \in \Theta(\log_2(n))
\]
Storing Heaps in Arrays

Heaps should *not* be stored as binary trees!

Let H be a heap of n items and let A be an array of size n. Store root in $A[0]$ and continue with elements *level-by-level* from top to bottom, in each level left-to-right.
Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:

- the *root* node is at index 0
 (We use “node” and “index” interchangeably in this implementation.)
- the *left child* of node i (if it exists) is node $2i + 1$
- the *right child* of node i (if it exists) is node $2i + 2$
- the *parent* of node i (if it exists) is node $\lfloor \frac{i-1}{2} \rfloor$
- the *last* node is $n - 1$
Heaps in Arrays – Navigation

It is easy to navigate the heap using this array representation:

- the *root* node is at index 0
 (We use “node” and “index” interchangeably in this implementation.)
- the *left child* of node *i* (if it exists) is node \(2i + 1\)
- the *right child* of node *i* (if it exists) is node \(2i + 2\)
- the *parent* of node *i* (if it exists) is node \(\left\lfloor \frac{i-1}{2} \right\rfloor\)
- the *last* node is \(n - 1\)

We should hide implementation details using helper-functions!

- functions *root()*, *parent(i)*, *last(n)*, etc.
Outline

Priority Queues
- Abstract Data Types
- ADT Priority Queue
- Binary Heaps
- Operations in Binary Heaps
- PQ-sort and Heapsort
- Summary
Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a *fix-up*:
Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a **fix-up**:

```
fix-up(A, k)
k: an index corresponding to a node of the heap
1. while parent(k) exists and A[parent(k)] < A[k] do
2. swap A[k] and A[parent(k)]
3. k ← parent(k)
```

The new item “bubbles up” until it reaches its correct place in the heap.
Insert in Heaps

- Place the new key at the first free leaf
- The heap-order property might be violated: perform a fix-up:

\[
\text{fix-up}(A, k) \\
k: \text{an index corresponding to a node of the heap} \\
1. \quad \textbf{while} \ parent(k) \ \textbf{exists and} \ A[parent(k)] < A[k] \ \textbf{do} \\
2. \quad \text{swap} \ A[k] \ \text{and} \ A[parent(k)] \\
3. \quad k \leftarrow parent(k)
\]

The new item “bubbles up” until it reaches its correct place in the heap.

Time: \(O(\text{height of heap}) = O(\log n) \).
fix-up example
fix-up example
fix-up example
fix-up example
deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a fix-down:
deleteMax in Heaps

- The maximum item of a heap is just the root node.
- We replace root by the last leaf (last leaf is taken out).
- The heap-order property might be violated: perform a \textbf{fix-down}:

\begin{algorithmic}[1]
\Function{fix-down}{A, n, k}
\State \textbf{A: an array that stores a heap of size }n
\State \textbf{k: an index corresponding to a node of the heap}
\State \While{\text{\textit{k} is not a leaf}}
\State \Comment{Find the child with the larger key}
\State \State j \gets \text{left child of } k
\State \If{(\textit{j} is not \textit{last}(n) and \text{\textit{A}[j] + 1} > \text{\textit{A}[j]})}
\State j \gets j + 1
\EndIf
\State \If{\text{\textit{A}[k] \geq \text{\textit{A}[j]}}} \textbf{break} \EndIf
\State \text{swap } \text{\textit{A}[j]} \text{ and } \text{\textit{A}[k]}
\State k \gets j
\EndWhile
\EndFunction
\end{algorithmic}

Time: $\mathcal{O}(\text{height of heap}) = \mathcal{O}(\log n)$.
deleteMax example
deleteMax example
deleteMax example
deleteMax example

```
        48
       / \  
     29   34
     / \  /  
   27 15 8  10
    |   / \  |
  23 26  8  10
```

Priority Queue Realization Using Heaps

- Store items in array A and globally keep track of $size$

\begin{align*}
\text{insert}(x) & \\
1. & \text{increase } size \\
2. & \ell \leftarrow \text{last}(size) \\
3. & A[\ell] \leftarrow x \\
4. & \text{fix-up}(A, \ell)
\end{align*}

\begin{align*}
\text{deleteMax()} & \\
1. & \ell \leftarrow \text{last}(size) \\
2. & \text{swap } A[\text{root()}] \text{ and } A[\ell] \\
3. & \text{decrease } size \\
4. & \text{fix-down}(A, \text{size, root()}) \\
5. & \text{return } A[\ell]
\end{align*}

\emph{insert} and \emph{deleteMax}: $O(\log n)$
Outline

1 Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • PQ-sort and Heapsort
 • Summary
Sorting using heaps

- Using the binary-heaps implementation of PQs, we obtain:

 \[
 \text{PQsortWithHeaps}(A)
 \begin{align*}
 1. \quad & \text{initialize } H \text{ to an empty heap} \\
 2. \quad & \text{for } k \leftarrow 0 \text{ to } n - 1 \text{ do} \\
 3. \quad & \quad H.\text{insert}(A[k]) \quad (\text{we just insert keys, no items}) \\
 4. \quad & \text{for } k \leftarrow n - 1 \text{ down to } 0 \text{ do} \\
 5. \quad & \quad A[k] \leftarrow H.\text{deleteMax}()
 \end{align*}
 \]

- Recall: runtime is

 \[
 O\left(\sum_{0 \leq i < n} \log(i) \text{ insert}(i) + \sum_{0 \leq i < n} \log(i) \text{ deleteMax}(i) \right)
 \]

- both operations run in \(O(\log n)\) time for heaps

\[\rightsquigarrow\] \text{PQ-Sort} using heaps takes \(O(n \log n)\) time.

- Can improve this with two simple tricks → \textbf{Heapsort}
 1. Heaps can be built faster if we know all input in advance.
 2. Can use the same array for input and heap. \(\rightsquigarrow O(1)\) auxiliary space!
Building Heaps with Fix-up

Problem: Given n items all at once (in $A[0 \cdots n - 1]$) build a heap containing all of them.

Solution 1: Start with an empty heap and insert items one at a time:

```plaintext
simpleHeapBuilding(A)
A: an array
1. initialize $H$ as an empty heap
2. for $i \leftarrow 0$ to $\text{size}(A) - 1$ do
3. \hspace{1em} $H.insert(A[i])$
```

This corresponds to doing *fix-ups*

Worst-case running time: $\Theta(n \log n)$ (we proved $O(\cdot)$, $\Omega(\cdot)$ is an exercise)
Building Heaps with Fix-down

Problem: Given \(n \) items all at once (in \(A[0 \cdots n - 1] \)) build a heap containing all of them.

Solution 2: Using *fix-downs* instead:

\[
\begin{align*}
\text{heapify}(A) \\
A: \text{an array} \\
1. & \quad n \leftarrow A.\text{size()} \\
2. & \quad \text{for } i \leftarrow \text{parent(last}(n)) \text{ downto } 0 \text{ do} \\
3. & \quad \text{fix-down}(A, n, i)
\end{align*}
\]

A careful analysis yields a worst-case complexity of \(\Theta(n) \).

A heap can be built in linear time.
heapify example

\[A = [10, 80, 50, 30, 20, 60, 10, 40, 70] \]
$T(n)$ is worst-case runtime of heapify for an array of length n.

Claim: $T(n) \in \Theta(n)$.

Proof for $n = 2^h - 1$

$T(n) = \Theta($worst case number of key swaps$)$

$$= \Theta(0.2^h + 1.2^{h-1} + 2.2^{h-2} + 3.2^{h-3} + \ldots + h.2^{h-h})$$

$$= \Theta(2^h \left(\frac{0}{2^0} + \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \ldots + \frac{h}{2^h} \right) \approx e)$$

$$= \Theta(2^h) = \Theta(n).$$
HeapSort

- Idea: **PQ-sort** with heaps.
- But: Use same input-array A for storing heap.

```
HeapSort(A, n)
1.     // heapify
2.     $n \leftarrow A.size()$
3.     for $i \leftarrow parent(last(n))$ downto 0 do
4.         fix-down($A, n, i$)
5.     // repeatedly find maximum
6.     while $n > 1$
7.         // delete the maximum
8.         swap items at $A[root()]$ and $A[last(n)]$
9.     decrease $n$
10.    fix-down($A, n, root()$)
```

The for-loop takes $\Theta(n)$ time and the while-loop takes $O(n \log n)$ time.
Heapsort example

Continue with the example from heapify:
Heap sort example

Continue with the example from heapify:
Heapsort example

Continue with the example from heapify:

The array (i.e., the heap in level-by-level order) is now in sorted order.
Outline

1 Priority Queues
 • Abstract Data Types
 • ADT Priority Queue
 • Binary Heaps
 • Operations in Binary Heaps
 • $PQ\text{-}sort$ and $Heapsort$
 • Summary
Heap summary

- **Binary heap**: A binary tree that satisfies structural property and heap-order property.
- Heaps are one possible realization of ADT PriorityQueue:
 - `insert` takes time $O(\log n)$
 - `deleteMax` takes time $O(\log n)$
 - Also supports `findMax` in time $O(1)$
- A binary heap can be built in linear time.
- **PQ-sort** with binary heaps leads to a sorting algorithm with $O(n \log n)$ worst-case run-time (\sim HeapSort)
- We have seen here the **max-oriented version** of heaps (the maximum priority is at the root).
- There exists a symmetric **min-oriented version** that supports `insert` and `deleteMin` with the same run-times.
Finding the smallest item

Problem: Find the *kth smallest item* in an array A of n distinct numbers.

Solution 1: Make k passes through the array, deleting the minimum number each time.
Complexity: $\Theta(kn)$.

Solution 2: Sort A, then return $A[k - 1]$.
Complexity: $\Theta(n \log n)$.

Solution 3: Scan the array and maintain the k smallest numbers seen so far in a max-heap
Complexity: $\Theta(n \log k)$.

Solution 4: Create a min-heap with $\text{heapify}(A)$. Call $\text{deleteMin}(A)$ k times.
Complexity: $\Theta(n + k \log n)$.
\[A = \begin{bmatrix} 10 & 25 & 1 & 7 & 3 \\ 10 & 1 & 1 & 1 \end{bmatrix} \quad k = 2 \]
$A = \left\{ 10, 25, 1, 7, 3 \right\}$

$k = 2$

Claim: $k \log(n) \leq n \log(k)$

Proof: The function $x \mapsto \frac{x}{\log(x)}$ is increasing.

$k \leq n$ so $k \leq \frac{n}{\log(k)} \leq \frac{n}{\log(n)}$