CS 240 — Data Structures and Data Management

Module 3: Sorting and Randomized Algorithms

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

Outline

" Sorting and Randomized Algorithms
= QuickSelect
= Randomized Algorithms
= QuickSort
" Lower Bound for Comparison-Based Sorting
= Non-Comparison-Based Sorting

Outline

= Sorting and Randomized Algorithms
= QuickSelect

Selection Problem

= Given array A of n numbers, and 0 < k < n, find the element that
would be at position k if A was sorted

= ‘select k’
= k elements are smaller or equal, n — 1 — k elements are larger or equal

0 1 2 3 4 5 6 7/ 3 9
30 |60 10 O |50 |80 (90 |20 |40 |70

select(2)
= Special case: median finding (k = E‘)
* Heap-based selection can be donein ®(n + klogn)
= thisis O(nlogn) for median finding
= the same cost as our best sorting algorithms
" Question: can we do selection in linear time?

= vyes, with quick-select (average case analysis)

= subroutines for quick-select also useful for sorting algorithms

Crucial Subroutines

0 1 2 3 p=4 ¢ 6 7 8 9
30 60 10 0 |v=50 80 90 20 40 70

1
1 1
I 1

= quick- select and rela’ted algorlthm quick- sort rely @n two su broutlnes
e X X

1
~ 1
] _ ! oo AN " \ H
] N e "\ 7 \ 1
1 S Vid \ 7’ A 1

! ~. ’ N LY ®,

’ \ o, \
e e \
\

'i return an index p in A AN y
" use pivot va/ue Vo« A 'p] T{) rearrangethe array

oi 1] 2] 3 a4l =56 3 s o,

A

30 | 10 0O | 20 40 v=50 60| 80 | 90 | 70

= partition (A4, p) rearranges A so that
= allitemsinA[O,..,i—1] are <v
= pivot-value visin A[i]
= allitemsinA[i+1,..,n—1] are=>v
" index i is called pivot-index i
= partition(A,p) returns pivot-index i

= [isacorrect location of vinsorted A
= if we were interested in select(i), then v would be the answer

Choosing Pivot

= Simplest idea for choose-pivot

= always select rightmost element in array

choose-pivot1(A)
return Asize() - 1

v

70

= Will consider more sophisticated ideas later

Partition Algorithm

partition(A, p)
A:array of sizen, p:integerst.0 < p < n
create empty lists small, equal and large

v « Alp]
for each element x in 4

if x < v then small. append(x)
else if x > v then large. append(x)

else equal. append(x)

i « small.size

Jj < equal.size
overwrite A[0...i — 1] by elementsin small
[+j— 1] byelementsin equal

overwrite A[i ...
overwrite A[i +j...n — 1] byelementsin large

return

Easy linear-time implementation using extra (auxiliary) ®(n) space

More challenging: partition in-place, i.e. O(1) auxiliary space

Efficient In-Place partition (Hoare)

i=-1

almost done,
just swap with
pivot v

=9
30 60 10 50 80 90 20 40 | v=/0
i=5 j=8
30 60 10 50 80 90 20 40 | v=70
i=5 j=8
30 60 10 50 40 90 20 80 | v=70
i=6 =7
30 60 10 50 40 90 20 80 | v=70
i=6 =7
30 60 10 50 40 20 90 80 | v=70
j=6 i=7
30 60 10 50 40 20 90 80 | v=70
=6 j=7)
30 60 10 50 40 20 | v=/0| 80

Efficient In-Place partition (Hoare)

= |dea Summary: Keep swapping the outer-most wrongly-positioned pairs

<v ? >V \Y;

®" One possible implementation

doi < i+ 1 whilei<n andA[i] <v
doj < j—1 whilej >0 and A[j] = v
= More efficient (for quickselect and quicksort) when many repeating elements

doi < i+ 1 whilei <nand Ali] <v
doj < j—1 whilej >0 and A[j] > v

= Can simplify the loop bounds

doi < i+ 1 while A[i] < v
doj < j—1 whilej >i and A[j] > v

Efficient In-Place partition (Hoare)

partition (A, p)
A: array of sizen

p:integerst. 0 <p <n

swap(A[n — 1], Alp])
i « —1, jen—1, v e Aln—1]

loop
doi < i+ 1 whileA[i] <wv
doj < j—1 whilej =i and A[j] > v
if { > then break
else swap(Ali], A[j])

end loop

swap(A[n — 1], A[i])

return |

= Running time is O(n)

Efficient In-Place partition (Hoare)

partition (A, p)
A: array of sizen

p:integerst. 0 <p <n

swap(A[n — 1], Alp])
i « —1, jen—1, v« Aln—1]

loop
doi < i+ 1 whileA[i] <wv
doj < j—1 whilej =i and A[j] > v
if { > then break
else swap(Ali], A[j])

end loop

swap(A[n — 1], A[i])

return |

= Running time is O(n)

Quick Select Algorithm

Find item that would be in A[k] if A was sorted
Similar to quick-sort, but recurse only on one side (“quick-sort with pruning”)

Example: select(k = 4)
= [the correct answer is 40 in this case]

30 60 10 0 50 80 90 20 40 | v=/0

=70

<artition, 1%

7 smallest items

90

U
o
D
o
N
o
~
o

30 60 10 0

<70

I > k, search recursively in the left side to select k

Quick Select Algorithm

= Example continued: select(k = 4)

50 40 | v=20

o

30 60 10

=20

3 smallest items

<artition, 1%

(i=2|
0 | 19 202
<20

50 40 60

w
o

= | < k,search recursively on the right, select k — (i + 1)
= k = 1inourexample

= Example continued: select(k = 1)

Quick Select Algorithm

30 50 40 | v=60
3
1
jay
\/§~
3 smallest items
| i=3
30 | 50 | 40 | 6O
< 60

I > k, search on the left to select k

Quick Select Algorithm

= Example continued: select(k = 1)

30 50 | v=40

=40

<artition, 1%

i=1
30| 40 | s0

= | =k, foundouritem, done!
= |n our example, we got to subarray of size 3
= Often stop much sooner than that

" running time?

QuickSelect Algorithm
quick-select1(A, k)

A: array of sizen, k:integerst. 0 <k <n

p < choose-pivot1(A)
[« partition(A,p)
ifi = k then
return A[i]
elseifi > k then
return quick-select1(A[0, 1, ...,i — 1], k)
elseif i <k then
return quick-select1(Ali +1,...,n—1], k — (i + 1))

= Best case
= first chosen pivot could have pivot-index k
= no recursive calls, total cost ®(n)
cn+Tn—-1) n>1

= Worst case: recurrence equation T(n) = { . -

QuickSelect Algorithm
= Worst case: recurrence equation T(n) = {cn + Tc(n -1 Z i 1
= Solution: repeatedly expand until we see a pattern forming

Tn)=cn+T(n—=1)

M
T(n—1)= "c¢(n—1)+T(n - 2)
Tm)=cn+cn—-1) jﬂﬁ —2) after 1 expansion

T(n—2)=c(n—2)+T(n—3)
Tm)=cn+cn—1)+c(n—2)+T(n—3) after2expansions
= After i expansions
Tm)=cn+ctn—-1D)+cn—-2)+-+cn—0)+Tn—(i+1))
= Stop expanding when getto basecase T(n — (i + 1)) = T(1)
* Happenswhen n— (i + 1) = 1, or, rewriting, i =n — 2

Thus TnM)=cn+c(n—-1D)+cn—=2)+--+c-2+T(1)
=cn+cn—-1)+cn—-2)+-+c-2+c

=cn+(n—-1+--+2+1)€0n?

Average-Case Analysis of quick-selectl

Tavr (n) = . Z (D)

instances of sizen
I:size(I)=n

infinitely many

= Need to make some assumptions
= First assumption
= all input numbers are distinct

= this assumption is just for simpler analysis, can prove the same thing
without this assumption

Average-Case Analysis of quick-selectl

= QuickSelect is comparison-based
= only cares if Ali] < A[j] fori,j
= does not care what the actual values of A[i], A[j] are

I, | 30 60 0 10 I,| 20 50 10 15

= QuickSelect makes exactly the same sequences of stepson [, and I,
= therefore T(I,) = T(,)

= Any comparison based algorithm has exactly the same running time for arrays
that have the same relative order of elements, regardless of actual array values

= Second assumption: we are sorting integers 0, ..., n — 1
= now there are n! possible input instances [

= more formal proof uses sorting permutations
= permutation 7 for which A[m(0)] < A[r(1)] <... < A[n(n —1)]
= for I, (and I,) sorting permutationisT = (2,3,0,1)
= assume each sorting permutation is equally likely

= n! possible permutations

Average-Case Analysis of quick-selectl

Tavr (n) = . Z (D)

instances of sizen
I:size(I)=n

= Example for n = 3, using all the assumptions

Tar(3) = %(T({O,l,Z}) + T7({0,2,1}) + T({1,0,2}) + T({1,2,0}) + T({2,0,1}) + T({2,1,0}))

Average-Case Analysis of quick-select1

= Recall that pivot is last array element

= Pivot index is equal to pivot value due to assuming we sort 0O, ..., n — 1

0

1

2

3

Al 2

3

0

v=1

for v=1, pivotindexi = 1

= Partition sum over different pivot indexes

n—1
T () = % z T() = %z z T()

i=0 I:size(I)=n,

' I:Size(I)=n

= Example for n = 3

pivot isi

Twr(3) = %(T({O,l,Z}) + T({0,2,1}) + T({1,0,2}) + T({1,2,0}) + T({2,0,1}) + T({2,1,0}))

Te7(3) = = (T({1,2,03) + T({2,1,0)) +
(T{0,2,1}) +T({2,0,1})) +
(T(0,1,2}) + T({1,0,2}))

Average-Case Analysis of quick-select1

= Partition sum over different pivots T (n) = %2?;012 I:size(D=n, 1)

pivotis i
= There are (n — 1)! input instances I with pivot index i
A i
choiceofn —1 choice of n — 2 items: ‘choice’ of no choice
items: anything but i anything but i and A[0] 1 items

® One can show (will only hint at the proof with example forn = 4,i = 1)

Z TIh<nm-D!en+ (n—1)!'max{T*" (i), T*""(n—i—1)}

I:size(I)=n,
pivotis i

» Therefore T%"(n) <cn+ %Z?;Ol max{T*" (i) ,T*""(n—i—1)}

Average-Case Analysis of quick-select1

T({0,2,3,1}) + T({0,3,2,1})

- letn=4i=1 > T = 17203 1) + T((2,3,0,1})
sizel)=t, +T({3,0,2,1}) + T({3,2,0, 1})

= Total work is proportional to comparisons, will count comparisons

: Total:
comparisons to
partition: 3 3 3 3 3 3 3(3)!
instances {0,2,3,1} {0,3,2,1} {2,0,3,1} {2,3,0,1} {3,0,2,1} {3,2,0,1}

SN N SN SN SN N
partitions {0} {2,3} {0} {3,2} {0} {2,3} {0} {2,3} {0} {3,2} {0} {3,2}

(assume stable
order)

Average-Case Analysis of quick-select1

T({0,2,3,1}) + T({0,3,2,1})

- letn=4i=1 > T = 17203 1) + T((2,3,0,1})
sizel)=t, +T({3,0,2,1}) + T({3,2,0, 1})

= Total work is proportional to comparisons, will count comparisons

: Total:
comparisons to
partition: 3 3 3 3 3 3 3(3)!
instances {0,2,3,1} {0,3,2,1} {2,0,3,1} {2,3,0,1} {3,0,2,1} {3,2,0,1}
partitions {0} {0} {0} {0} {0} {0}

Case 1: k > i T({2,3}) + T({3,2}) + T({2,3}) + T({2,3}) + T({3,2}) + T({3,2}) ~ since only
relative order

=T({0,1}) + T({1,0}) + T({0,1}) + T({0,1}) + T({1,0}) + T({1,0})}¢ matters
S~ 7

swap

Average-Case Analysis of quick-select1

T({0,2,3,1}) + T({0,3,2,1})

- letn=4i=1 > T = 17203 1) + T((2,3,0,1})
sizel)=t, +T({3,0,2,1}) + T({3,2,0, 1})

= Total work is proportional to comparisons, will count comparisons

: Total:
comparisons to
partition: 3 3 3 3 3 3 3(3)!
instances {0;2)3) 1} {0;3)2) 1} {2;013) 1} {2;3101 1} {31012) 1} {3)2)01 1}
partitions {0} {0} {0} {0} {0} {0}

Case 1: k > i T({2,3}) + T({3,2}) + T({2,3}) + T({2,3}) + T({3,2}) + T({3,2}) ~ since only
relative order

= T({0,1}) + T({1,0}) + T({0,1}) + T({1,0}) + T({0,1}) + T({1,0}) matters

\ J \ J \ J

| Y Y
21TV (2) 21 T4V (2) 21 TV (2)

|
Total recursive comparisons % 21 Tav"(2)= 31 Tavr (2)

Average-Case Analysis of quick-select1
T{0,2,3,1}) + T({0,3,2,1})

"letn=4,i=1 2 rh=+T{203,1})+T({23,0,1})
B +T({3,0,2,1}) + T(13,2,0,1})

= Total work is proportional to comparisons, will count comparisons

. Total:
comparisons to
partition: 3 3 3 3 3 3 3(3)!
instances {0,2,3,1} {0,3, 2 1} {2,0,3, 1} {2,3,0, 1} {3,0,2, 1} {3,2,0, 1}

partitions ‘/ 2,3} (0) {3 2} (o) {2 3} (o) {2 3} (o) {3 2} (o) {3 2)

Case2:k<i T{OY + THOYH + THOH + T{0H + T({0}) + T(O})
1T@T(1) 1UT®T(1) UT®7(1) UTY7(1) UTY7(1) 1UTY7(1)

3!
1 i _ avr — avr
Total recursive comparisons T 117" (1) =3!T (1)
[Case 1, total recursive comparisons: = 3| Tavr (2)]
Combining both cases, total recursive comparisons : < 3'max{T*" (1), T (2)}

Adding comparisons to partition: < 3(3)!'+ 3'max{T*" (1), T*"(2)} ~

Average-Case Analysis of quick-select1
T({0,2,3,1}) + T({0,3,2,1})

"letn=4,i=1 2 rh=+T{203,1})+T({23,0,1})
B +T({3,0,2,1}) + T(13,2,0,1})

= Total work is proportional to comparisons, will count comparisons

. Total:
comparisons to
partition: 3 3 3 3 3 3 3(4 —1)!
instances {0,2,3,1} {0,3, 2 1} {2,0,3, 1} {2,3,0, 1} {3,0,2, 1} {3,2,0, 1}

partitions ‘/ 2,3} (0) {3 2} (o) {2 3} (o) {2 3} (o) {3 2} (o) {3 2)

Casezk<i T{O}) + THO}) + T{0}) + T{0H) + T{OH + T({0})
1T9T (1) UT®"(1) 1UTY(1) 1UT®"(1) 1UTY7(1) 1UTY"(1)
|
Total recursive comparisons — 11 TaV7 (1) — 31 TAavr (1)

z TIHh<nm-D!en+ (n—1D)!'max{T*"({), T*"" n—i—1)}

I:size(I)=n,
Comt pivot is i

Adding comparisons to partition: < 3(3)!'+ 3!max{T*" (1), T*"(2)} -

Average-Case Analysis of quick-selectl

Tm)<c-n+-— zmax{T(l) Tn—i—1)}
Theorem: T(n) € O(n)
Proof:
= will prove T(n) < 4cn by induction onn
= basecase,n=1:T(1)=c <4c-1
= induction hypothesis: assume T(m) < 4cm forall m<n

= needtoshow T(n) < 4cn induction hypothesis applies
to each one of these

Tm)<c-n+-— Zmax{T(l) Tn—i—1)}
<c-n+- Zmax{l}a 4c(n—i— 1)}

<c- n+—Zmax{ln—l—1}

Average-Case Analysis of quick-select1 exactly what we

need for the proof

n-—1 \

4c _ _ 4c 3
Proof: (cont.) T(n) <c-n+ —z max{in—i—1}<c-n+ - an 4en
=0

Z—1

Zmax{ln—l—l}— zmax{Ln—1—1}+Zmax{Ln—l—1}

2 n n
= max{0,n — 1} +max{1l,n — 2} +max{2,n — 3} +--- + max {5 —~ 1,5}

nn n n
_ __1t4 —+1,——2} + -+ maxin—1,0
+max {2 > 1} max {2 > { }
n n n 3n n
=n—-1)+n—-2 +---+—+—+(—+1)+---n—1 =——=1]—
(- DH -t etgaz+ (3 -1 (2 1)2

l

l
3n 1n 3n 1n
2 4 2 4

Average-Case Analysis of quick-selectl

= Proved average case time T(n) is O(n)
= Average case is also Q(n) since have to perform partition(A, p)

» Therefore average caseis T(n) is ©(n)

Outline

= Sorting and Randomized Algorithms

= Randomized Algorithms

Randomized Algorithms

A randomized algorithm is one which relies on some
random numbers in addition to the input

The cost will depend on both the input and the random
numbers used

Goal

= shift the dependency of run-time from what we cannot control (the
input), to what we can control (random numbers)
" no more bad instances, just unlucky numbers
= if running time is long on some instance, it’s because we generated
unlucky random numbers, not because of the instance itself

Side note

= computers cannot generate truly random numbers

= we assume there is a pseudo-random number generator (PRNG), a
deterministic program that uses an initial value or seed to generate a
sequence of seemingly random numbers

= quality of randomized algorithm depends on the quality of the PRNG

Expected Running Time

How do we measure the running time of a randomized algorithm?

= jtdepends on theinput I and on R, the sequence of random numbers an
algorithm choses during execution

Define T(I, R) to be running time of randomized algorithm for instance I and R
The expected running time Te*(I) for instance I is expected value for T (I, R)

Texn(I) = E[T(I,R)] = Z T(I,R) - Pr[R]

all possible
sequences R

Worst-case expected running time

exp — exp
T (Tl) {I:sirzré%l)§=n}T (I)

Average-case expected running time
1

Texp (1
|I:size(I) =n| ()
I:Size(I)=n

Tew(n) =

Usually design A so that all instances of size n have the same expected run time

Thus the average and worst case expected run times are the same, and we jusit
compute the worst case expected time

Expected Running Time

How do we measure the running time of a randomized algorithm?

= jtdepends on the input/ and on R, the sequence of random numbers an algorithm
choses during execution

Define T(I, R) to be running time of randomized algorithm for instance I and R
The expected running time Te*(I) for instance I is expected value for T(I, R)

Texe () = E[T(I,R)] = z T(I,R) - Pr[R]

all possible
sequences R

Worst-case expected running time Te*(n) = max Ter(l)
{I:'size(I)=n}
1
- ing ti exp(n) = . exp
Average-case expected running time Teé®(n) TR — 2r:size(n)=n T F ()

Usually design A so that all instances of size n have the same expected run time
Thus average and worst case expected run times are usually the same

= just compute the worst case expected time

Sometimes we also want to know the running time if we got really unlucky with the
random numbers R we generate during the execution, or, formally

max max _T(I,R)
R {I:size(I)=n}

Randomized QuickSelect: Shuffle

= @Goal: create a randomized version of QuickSelect for which all input has the same
expected run-time

= First idea: first randomly permute input using shuffle and then run selection
algorithm

shuffle(A)
A :array of sizen
fori «—0ton—1do
swap(Ali], Alrandom(i + 1)])
= random(n) returns an integer uniformly sampled from {0, 1,2, ...,n — 1}
= can show that expected running time is ®(n), the same as average running time

Randomized QuickSelect: Shuffle

= @Goal: create a randomized version of QuickSelect for which all input has the same
expected run-time

= First idea: first randomly permute input using shuffle and then run selection
algorithm

shuffle(A)
A :array of sizen
fori «—0ton—1do
swap(Ali], Alrandom(i + 1)])

= random(n) returns an integer uniformly sampled from {0, 1,2, ...,n — 1}

= can show that expected running time is ®(n), the same as average running time

= jf we get very unlucky with random numbers, we could get a sorted or almost
sorted array after shuffle, resulting in O(n?) performance for selection algorithm

= probability of this happening is almost zero

= whereas the user is quite likely to give instance which is sorted or almost sorted
to the selection algorithm

= probability is far from zero, humans often produce almost sorted data

Randomized QuickSelect: Random Pivot

= Second idea: select a random pivot from {0,1, 2, ...,n — 1}

choose-pivot2(A)

return random(A. size())

= Simpler and more efficient than shuffling the array
= Usually fastest in practice
* Expected running time is again ©(n)

Efficiency of Randomized QuickSelect

quick-select2(A, k)
p «<— choose-pivot2(A)
“the rest”

choose-pivot2(A)
return random(A. size())

Assume all elements of 4 are distinct

Select pivot with equal probability at each recursive call, and independently

from other recursive calls

. . . 1 . .
= P(pivot has index i) = - for any instance of size n

Te*?(1) depends only on the size of I, not the contents of [
Let T¢*?(n) be expected time on an instance of size n
Running time to partition array is cn, and with probability 1/n pivot-index is i

l

Texr(i) v Ter(n—i—1)
}
y o
size [sizen—i—1

running time if pivot indexis i < ¢+ n + max{Ter(i), T¢*?(n — i — 1)}

Efficiency of Randomized QuickSelect
running time if pivot-indexis i < ¢ -+ n + max{T¢?(i), T¢*?(n — i — 1)}
= Taking expectation over pivot index i

n-1
Te*r(n) = Z (running time if pivot index is i)P(index of pivot is i)
i=0

n-1 1
< z (en + max{Te»(i),TexP(n —i — 1}) -

JVASTE

n-11
<cn+ z —max{Te?(i), T*?(n —i — 1)}
i=0

= Same recurrence as for non-randomized average case
= Resolves to O(n) expected time on instance of size n
= Side note
» there is selection algorithm “Median of Medians” (cs341) that has
worst-case running time 0(n)

= uses double recursion
= slower in practice

QuickSelect: Badly Desighed Randomization

choose-random-pivot-badly(A)
if A.size = 3 return random(3)

else return 0

exp — exp
r (Tl) {I:SiIzI;?;%:n}T (I)

Worst instance is sorted array I, = {0,1, ..., n — 1}

en + 2T (ly—) + T (ly3) + TP (Iy_3) if n = 3
C ifn<3
Texr(l) = cn+ T(l,_3) ifn >3

Resolves to O(n?)

Texp (In) —

Worst case expected time is @(n?)

Outline

= Sorting and Randomized Algorithms

= QuickSort

QuickSort

= Hoare developed partition and quick-select in 1960
= He also used them to sort based on partitioning

quick-sort1(A)

Input: array A of size n

if n <1 then return

p < choose-pivot1(A)

[< partition (A ,p)
quick-sort1(A[0, 1, ...,i — 1])
quick-sort1(Ali + 1, ...,n — 1])

= Let T(n) to be the runtime on size n array
= |f we know pivot-index i, thenT(n) =cn+ T({)+T(n—i—1)
= Worstcase T(n) =T(n—1) +cn
= recurrence solved in the same way as quick-select1, @(n?)
= BestcaseT(n) =T(n/2]) + T(In/2]) + cn

= solved in the same way as merge-sort, @(nlogn)

Average-case analysis of quick-sortl

Make the same assumptions as for quick-selectl
Deriving recurrence equation is similar to quick-selectl, but recurse on both sides
i=2

1 0 v =2 3 5 8 9 6 4 7

| |

recurse recurse

Using the same approach as for quick-selectl, average running time is

n—1

T(n)=%2(cn+T(i)+T(n—i—1)), n=2

i=0
Running time is proportional to the number of comparisons
Recurrence for counting comparisons

n-—1

T(n) =%z(n+T(i)+T(n—i—1)), nz=?2

=0

Average-case analysis of quick-sortl

= First let us get a simpler recursive expression for T'(n)

n-—1
T(n) = %E(n + T +T(n—i—1))
=0

1
=n+—ZT(1)+—ZT(n—L—1)
=0 ni=0
/ .
TO+TW)+-+Tn=-1) Tm-1D4+Tn-=2)+--+T(0)
n—1
2
=+ T
n
i=0

Average-case analysis

n-1
2 ~
of quick-sort1 T(n) = n+ - ._EO T(i) is O(nlogn)

Proof
n-1
Multiply by n: nT(n) = n2+2 T (i)
i=0 n-2
Plugin n — 1: n—1DTn-1) = (n—1)2+22 T (i)
i=0
Subtract: nT(n) —(n—1T(n-1) =2n—-1+4+2T(n—1)
Rearrange : nTm)=n+1DTn-1) +2n-1
T T(n—1 2n —1
Divide by (n + 1)n: () — (n=1) + "
n+1 n nn+1)
2n—1 2m—1)—1 2n-1
T(n)
=——: Amn)=An-1 =An—2
Let A(n) — (n) (n)+n(n+1) (n—2)+ = Dn +n(n+1)
n n n
L Z 21 —1 _ Z 2 Z 1
— i(i+1) = [+ 1} = i(i+ 1})

Therefore: A(n) =clogn O(ogn) @Y)(1)

Finally: T(n) = (n+ 1)A(n) = c(n+ 1) logn e O(nlogn)

Improvement ideas for QuickSort

= Randomize by using choose-pivot2, giving @(nlogn) expected time
for quick-sort2
= The auxiliary space is {(recursion depth)
= ©(n) in the worst-case

= can be reduce to @(logn) worst-case by
= recurse in smaller sub-array first
= replacing the other recursion by a while-loop (tail call elimination)

= Stop recursion when,say n < 10

= array is not completely sorted, but almost sorted

= atthe end, run insertionSort, it sorts in just O(n) time since all items
are within 10 units of the required position

= Arrays with many duplicates sorted faster by

<v =D >V

changing partition to produce three subsets
" Programming tricks
= instead of passing full arrays, pass only the range of indices
= avoid recursion altogether by keeping an explicit stack

QuickSort with Tricks

quick-sort3(A,n)
initialize a stack S of index-pairs with {(0,n — 1)}
while S is not empty
(l, T‘) « S, pop() // get the next subproblem
whiler — 1+ 1 > 10 // workonitifit’slarger than 10
p < choose-pivot2(4, [, 1)

[< partition (4, [,7,p)
ifi—1l>r—ido // is left side larger than right?

S. push((l, [— 1)) // store larger problem in S for later
l—i+1 // next work on the right side
else

S. puSh((i + 1, T')) // store larger problem in S for later
rei—1 // next work on the left side

InsertionSort(A)

* This is often the most efficient sorting algorithm in practice

Outline

= Sorting and Randomized Algorithms

= Lower Bound for Comparison-Based Sorting

Lower bounds for sorting

= We have seen many sorting algorithms

Sort Running Time Analysis
Selection Sort O(n?) worst-case
Insertion Sort 0(n?) worst-case

Merge Sort O(nlogn) worst-case
Heap Sort O(nlogn) worst-case
quick-sortl ®(nlogn) average-case

quick-sort2 ®(nlogn) expected

= Question: Can one do better than ©(nlogn) running time?
= Answer: /[t depends on what we allow
= No: comparison-based sorting lower bound is Q(nlogn)
" no restriction on input, just must be able to compare

= Yes: non-comparison-based sorting can achieve O(n)
= restrictions on input

The Comparison Model

All sorting algorithms seen so far are in the comparison model
In the comparison model data can only be accessed in two ways
= comparing two elements
= Ali] = A[]
= moving elements around (e.g. copying, swapping)
This makes very few assumptions on the things we are sorting
= just count the number of above operations

Under comparison model, will show that any sorting algorithm
requires ((nlogn) comparisons

This lower bound is not for an algorithm, it is for the sorting
problem

How can we talk about problem without algorithm?
= count number of comparisons any sorting algorithm has to perform

Decision Tree

Decision tree succinctly describes all the decisions that are taken
during the execution of an algorithm and the resulting outcome

For each sorting algorithm we can construct a corresponding
decision tree

Given decision tree, we can deduce the algorithm
Decision tree can be constructed for any algorithm, not just sorting

Decision Tree Example

= Decision tree for a concrete comparison based sorting algorithm, with 3 non-
repeating elements [x,,x,x,]

Set of all possible inputs

0,1 2 — xy<x;<x, output[xyxyx,]
0, 2, 1 —— x,<x,<x,; output [xyx,x,]
1,0, 2 —— x,<x,<x, output [x;,x,x,]
1,2,0 —— x,<x,<x, output [x,xyx]
2; 0; 1] —— X <x,<Xx, output [x1,%5,%,]
2,1,0 —— X, <Xy <Xy output[xyx;,x]

= Have to determine which of the 6 inputs we are given before can give output
= unique output for each distinct input

Decision Tree

= Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements

012 > 1,02
021 201
120 210
XX
>
< 021 1,02 < >
120 201

Xo <X, <X, x, < x; < X,

0,1,2 @0 Xy) (Xg: Xp) 2,1,0
\< < >

0,21 1,2,0 1,0,2 2,0,1
Xo <X, <Xy X<%x,<Xg X, <Xx,<%X, X,<x,<0X,

Root corresponds to the set of all possible inputs
Interior nodes are comparisons: each comparison splits the set of possible inputs into two
Know correct sorting order only when the set of possible inputs shrinks to size one
= nodes where possible input shrunk to size one are leaves, when reach them, can output sorting result

Sorting algorithm will traverse a path starting at root and ending at a leaf
= length of the path is the number of comparisons to be made

Tree height is the number of comparisons required for sorting in the worst case

Decision Tree

= Decision tree for a concrete comparison based sorting algorithm, with 3 non-repeating elements

0,1,2
Xy < %1 <X,

<

0,21 1,2,0 1,0,2 2,0,1
Xog <X, <X; X <%,<Xq X, <X,<%X, X,<Xx,<X,

2,1,0
X, < x; < X4

= Algorithm could do more comparisons than necessary
= Thus can have more leafs than possible inputs

= But the number of leaves must be at least the number of possible inputs

Decision Tree

= Decision tree for any comparison-based sorting algorithm, n non-repeating elements

S n! possible
inputs

subset of n!

A subset of n! possible inputs B

possible inputs

</

subset of A subset of A

subset of B subset of B

- one possible ™
one possible input one possible

input input

one possible
input

one possible
input

= Tree must have at least n! leaves
* Binary tree with height h has at most 2" leaves
= Height h must be at least such that 2" > n!

= Tree height is the number of comparisons required in the worst case

Lower bound for sorting in the comparison model

Theorem: Any correct comparison-based sorting algorithm requires at least
Q(nlogn) comparisons
Proof:

= There exists a set of n! possible inputs s.t. each leads to a different output
= Decision tree must have at least n! leaves

= Binary tree with height h has at most 2" leaves

= Height h must be at least such that 2" > n!

= Taking logs of both sides - ng
(\
h > log(n!) =logln(n—-1)...-1)=logn + --- + log(g +1)+1o Z ~~log 1
n n n n n n
= log2 + -+ log2 > log2 > logn =5 (nlogn)

\ }
!

% ofth
2 (0] em

Outline

= Sorting and Randomized Algorithms

= Non-Comparison-Based Sorting

Non-Comparison-Based Sorting

Sort without comparing items to each other

Non-comparison based sorting is less general than comparison
based

In particular, we need to make assumptions about items we sort

" unlike in comparison based sorting, which sorts any data,
as long as it can be compared

Will assume we are sorting non-negative integers
= can adapt to negative integers
= also to some other data types, such as strings
=" but cannot sort arbitrary data

Non-Comparison-Based Sorting

= Simplest example
= suppose all keysin A are integers in range |0, ..., L — 1]
= For non-comparison sorting, running time depends on both

= arraysizen
= L

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]
* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e.array of initially empty linked lists, initialization is ®(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 B
T I I I LI I I I I I I I ZI1

14

10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
k=0| 12
l 1L 1L L L 1 1 &£ & 4 1 1 1 1 1
14 12
7
6
7
0
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12
. 1 4 11 1+ L1 1 1 1 1
k=1 14 12 14
7
6
7
0
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12

l 1 1 1 L 1 1 1 1 1 1 1 1 1

14 7 12 14
k=2 7
6
7
0
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12
T T L L T L T T T L L L L L1
14 6 | 7 12 14
7
k=3 °©
7
0
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12
4 1 1 1 1 L [1 1 1L 1 1 |
14 6 || 7 12 14
7 4
7/
6
k=4 7
0)
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12
| L L L 1 1 1 1 1 1L 1 1 |
14 0 6 || 7 12 14
7 4
7
6
7/
k=c| O
10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O0, ...,L — 1] to sort
= j.e. array of linked lists, initialization is ©@(L)

= Example with L = 15

A o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
12
| L L L 1 1 1 1 i N N N R
14 0 6 || 7 10 12 14
7 4
7
6
7/
0)
k=6 10

Bucket Sort

= Suppose all keys in A are integers in range [0, ..., L — 1]

* Use an axillary bucket array B|O, ..., L — 1] to sort
= j.e.array of linked lists, initialization is ©@(L)

= Example with L = 15
= Now iterate through B and copy non-empty buckets to A

<

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SERRERRERNNY

| L 1 14 1 L 1 1 4 1 1 1 1 |

7 0 6 || 7 10 12 14
10 \ 4
7
12

* Time complexity is O(L + n)

. = nissizeof A4

Digit Based Non-Comparison-Based Sorting

* Running time of bucket sort is O(L + n)
" nissizeof A
= Lisrange [0,L) of integersin A
= Whatif L is much larger than n?
= j.e. A hassize 100, range of integersin A is [0, ..., 99999]

= Assume at most m digits in any key
= pad with leading Os

123 230 021 320 210 232 101

= Can sort ‘digit by digit’, can go
= forward, from digit 1 — m (more obvious)
= backward, from from digit m — 1 (less obvious)
= bucketsort is perfect for sorting ‘by digit’

= Example: A has size 100, range of integers in A is [0,...,99999]
" integers have at most 5 digits, need only 5 iterations of bucketsort

Bucket Sort on Last Digit

= Equivalent to normal bucket sort if we redefine comparison
= a < b if the last digit of a is smaller than (or equal) to the last digit of b

A B A
——| 123 B[O] 230 320 210 230
—| 230 B[1] 101 320
— 1 B[2] 210
—| 320 B[3] 123 121
— 210 101
— 232 232
— | 101 123

= Bucket sort is stable: equal items stay in original order
= crucial for developing LSD radix sort later

Base R number representation

= Number of distinct digits gives the number of buckets R
= Useful to control number of buckets

= larger R means less digits (less iterations), but more work per
iteration (larger bucket array)

= may want exactly 2, or 4, or even 128 buckets
= Can do so with base R representation

= digitsgofromOtoR — 1

= R buckets

* numbers areintherange{0,1,...,R™ — 1}

= From now on, assume keys are numbers in base R (R: radix)
= R = 2,10,128,256 are common

= Example (R = 4)

123 230 21 320 210 232 101

Single Digit Bucket Sort

Bucket-sort(A, d)

A : array of size n, contains numbers with digits in {0, ..., R — 1}

d: index of digit by which we wish to sort

initialize array B]O, ..., R — 1] of empty lists (buckets)
fori — 0 ton—1 do

next «— Ali]

append next at end of B[dth digit of next]
[<—0
forj<— OtoR—1do

while B[j] is non-empty do

move first element of B[j] to A[i++]

= Sorting is stable: equal items stay in original order
= Run-time O(n + R)
= Auxiliary space O(n + R)

= O(R) forarray B, and linked lists are ©(n)

Single Digit Bucket Sort

Bucket-so A B
A :arrayo —
d: index 123 B[O 230 320 210
230 B[1] 121 101
121 B[2] 232
320 B[3] 123
210
232
101 /
= Sorting is

= Run-time®(n + R
= Auxiliary space O(n + R)
= O(R) forarray B, and linked lists are ©(n)
= (Can replace lists by two auxiliary arrays of size R and n, resulting in count-sort

" no details

MSD-Radix-Sort

= Sorts multi-digit numbers from the most significant to the least significant
= Start by sorting the whole array by the first digit

123
232
021
320
210
230
101

MSD-Radix-Sort

= Sorts multi-digit numbers from the most significant to the least significant
= Start by sorting the whole array by the first digit

123
232
021
320

210

230

101

MSD-Radix-Sort

= Sorts multi-digit numbers from the most significant to the least significant
= Start by sorting the whole array by the first digit

group 1{ 021 101
| 123 2
group 2< —— /l)@/
101 021
; sort the whole array
;32 by the second digi 123
group3 < | 210 232
| 230 230
group 4{ 320 320

= Cannot sort the whole array by the second digit, will mess up the order

= Have to break down in groups by the first digit
= each group can be safely sorted by the second digit
= call sort recursively on each group, with appropriate array bounds

MSD-Radix-Sort

= Recursively sorts multi-digit numbers

= sort by leading digit, group by next digit, then call sort recursively on each group

021 |°
groupl{ 021 0
| 123 | &
group 2-< %
| 101
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion

depth O depth 1

MSD-Radix-Sort

= Recursively sorts multi-digit numbers

= sort by leading digit, group by next digit, then call sort recursively on each group

021 |’
groupl{ 021 0
| 123 | &
group 2-< %
| 101
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion

depth O depth 1

MSD-Radix-Sort

= Recursively sorts multi-digit numbers

= sort by leading digit, group by next digit, then call sort recursively on each group

021 |°
groupl{ 021 0
| 123 | 5/, 123 |
group 2< %/ K —
| 101 | 7] 101 |
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion

depth O depth 1

MSD-Radix-Sort

= Recursively sorts multi-digit numbers

= sort by leading digit, group by next digit, then call sort recursively on each group

021 |°
groupl{ 021 0 1
: & . 101 |
123 | &/ .| 101
group 2< %/ K —
| 101 | 7 123 |
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers

= sort by leading digit, group by next digit, then call sort recursively on each group

021 |°
groupl{ 021 0 1
: & . 101 |
123 | &/ .| 101
group 2< %/ K —
| 101 | 7 123 |
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232
group3 < | 210
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |
| 232 .
210
group3 < | 210 3
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |
| 232 .
210
group3 < | 210 3
| 230
group4{ 320
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232 .
210
group3 < | 210 3
| 230 232 |4
group4{ 320 230 5
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232 .
210
group3 < | 210 3
| 230 230 |4
group4{ 320 232 5
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232 .
210
group3 < | 210 3
| 230 230 |4
group4{ 320 232 5
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort

= Recursively sorts multi-digit numbers
= sort by leading digit, group by next digit, then call sort recursively on each group

groupl{ 021 1
: 101 |
123
group 2-<
| 101 123 |,
| 232 .
210
group3 < | 210 3
| 230 230 |4
group4{ 320 232 5
recursion recursion recursion

depth O depth 1 depth 2

MSD-Radix-Sort Space Analysis

Bucket-sort

= auxiliary space ©(n + R)
Recursion depthism — 1

= auxiliary space ©(m)
Total auxiliary space ©(n + R + m)

021

123

101

232

101

123

210

230

210

320

recursion

depth O

recursion
depth 1

recursion
depth 2

MSD-Radix-Sort Time Analysis

Time spent for each recursion depth 021
= DepthO — 101
= one bucket sort on n items lZ3
= O(n+R) 101 173
= All other depths —
= lets k be the number of bucket sorts ;32
at each depth 210
- k<n 210
= cannot have more bucket sorts than 230
the array size 230 —
= each bucket sort is on n; items 320 23;
= Yilom=n —
= each bucket sortisn; + R
" ?=o(ni+R) =n-+ Z?:o R<n+nR recursion recursion recursion
= total time at any depth is O(nR) depth 0 depth 1 depth 2

= Number of depthsisat mostm — 1
= Total time O(mnR)

MSD-Radix-Sort Time Analysis

= Total time O(mnR)

= Thisis O(n) if sort items in limited range
= suppose R = 2, and we sort are n integers in the range [0, 219)
= thenm =10, R = 2, and sortingis 0(n)
= pote that n, the number of items to sort, can be arbitrarily large

MSD-Radix-Sort Time Analysis

= Total time O(mnR)

= Thisis O(n) if sort items in limited range
= suppose R = 2, and we sort are n integers in the range [0, 219)
= thenm =10, R = 2, and sortingis 0(n)
= pote that n, the number of items to sort, can be arbitrarily large

= This does not contradict (nlogn) bound on the sorting problem,
since the bound applies to comparison-based sorting

MSD-Radix-Sort Pseudocode

= Sorts array of m-digit radix-R numbers recursively
= Sort by leading digit, then each group by next digit, etc.

MSD-Radix-sort(A, | « 0,r «n—1,d « leading digit index)
[,r : indexes between whichtosort, 0 < [,r<n-1
if [<r
bucket-sort(A [l ...r], d)
if there are digits left
' <1
while (' <r) do
let v’ = I'be the maximal s.t A [I'...7'] have the same dth digit
MSD-Radix-sort(A,U',r",d + 1)
' «r"+1

= Run-time O(mnR)
= Auxiliary space is ®(m + n + R) for bucket sort and recursion stack
= Drawback of MSD-Radix-sort is many recursions

LSD-Radix-Sort

= |dea: apply single digit bucket sort from least significant digit
to the most significant digit

= (QObserve that digit bucket sort is stable
= equal elements stay in the original order

= therefore, we can apply single digit bucket sort to the
whole array, and the output will be sorted after
iterations over all digits

LSD-Radix-Sort

123 | | 230 | | 230 | | 101 | | 101 | | 101
230 | | 320 | [(320 | | 210 | | 210)| | 121
121 | | 210 | | 210 | |(320)| | 320 | | 123
320 | | 121 | [(120) | |(121) | | 121
210 | [101 | [101 | [(123)| | 123 | | 230
232 | [232 | | 232 | | 230 | [230)| | @232
101 | | 123 | | @23)| | 232 | |(232)] | 320
prepare last digit prepare to last two prepare last three
e e s fredan s

m bucket sorts, on n items each, one bucket sortis @(n + R)
Total time cost @(m(n + R))

LSD-Radix-Sort

LSD-radix-sort(A)
A: array of size n, contains m-digit radix-R numbers
for d < least significant down to most significant digit do

bucket-sort(A, d)

= Loop invariant: after iteration i, A is sorted w.r.t. the last i digits of each entry
= Time cost ®(m(n + R))
= Auxiliary space O(n + R)

Summary

Sorting is an important and very well-studied problem
Can be done in O(nlogn) time

= faster is not possible for general input

HeapSort is the only @(nlog n) time algorithm we have seen with
O(1) auxiliary space

MergeSort is also O(nlogn) time
Selection and insertion sorts are O(n?)
QuickSort is worst-case ©(n?), but often the fastest in practice

BucketSort and RadixSort can achieve o(nlogn) if the input is
special

Best-case, worst-case, average-case can all differ

Randomized algorithms can eliminate “bad cases”, resulting in the
same expected time for all cases

