CS 240 — Data Structures and Data Management

Module 7: Dictionaries via Hashing

T. Biedl E. Schost O. Veksler

Based on lecture notes by many previous ¢s240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Winter 2021

version 2021-02-20 15:27

Direct Addressing

Special situation: For a known M € N, every key k is an integer with
0< k<M. -

We can then implement a dictionary easily: Use an array A of size M that

stores (k, v) via Alk] « v.
N~N~—

@ search(k): Check whether Alk] is NIL
@ insert(k,v): Alk] + v
delete(k): Alk] < NIL

Direct Addressing

Special situation: For a known M € N, every key k is an integer with
0< k<M.

We can then implement a dictionary easily: Use an array A of size M that
stores (k, v) via Alk] < v.

@ search(k): Check whether Alk] is NIL
o insert(k,v): Alk] + v
o delete(k): Alk] < NIL

-

Q.
O
0%

Each operation is ©(1).
Total space is ©O(\1).

What sorting algorithm does this remind you of?
Bucket Sort

O ~N OO O & W N

Hashing

Two disadvantages of direct addressing:
@ |t cannot be used if the keys are not integers.

@ It wastes space if M is unknown or n < M.

Hashing idea: Map (arbitrary) keys to integers in range {0,..., M—1}

: : —
and then use direct addressing.
Details:
@ Assumption: We know that all keys come from some universe U.

(Typically U = N.)
,ﬁp
o We design a hash function h: U — {0,1,... .M —1}.

(Commonly used: h(k) = k mod M. We will see other choices later.)
| VN

@ Store dictionary in hash table, i.e., an array T of size M.
@ An item with key k should ideally be stored in slot h(k), i.e., at

Th(k)]

Hashing example

U = N/M — g,/ h(k) = k mod 11.
The h£h table stores keys 7, 13, 43, 45, 49, 92. (Values are not shown).

-

m 4% = bl +!

3 5L|\l-|| |

02 -) l‘ls No‘ l\':-'l
A W(4s)=\

O 0 ~N O O D W N e
= —

=7
-
-
N
&Y

Collisions

@ Generally hash function h is not injective, so many keys can map to
the same integer.

» For example, h(46) =2 = h(13) if h(k) = k mod 11.

e We get collisions: we want to insert (k, v) into the table,
but T|h(k)] is already occupied.

@ [here are many strategies to resolve collisions:

N

‘multiple items at location) [alternate slots in array

} (Chaining) || (Open addressing)
' / ™y 4 \ ™
many alternate slots one alternate slot

_ (Probe sequence)

_ .

[Linear Probing] [Double Hashingj
5

(Cuckoo Hashing)

ﬂoh\e.l:'l) J_} \Numa i @lision ()
SUWO\C e pl(}. W \ro.(u.u th S‘O'“H"S; [;hplno‘m"k&/

= L0-3) (-2)- (1- &

?(o\o((o“'i&'m\ = | - (|'-::\\-- (1- Q;I"'.) = g(l\,ﬂ\
2(1,%5) Lo5 Jmy308)505

Outline

€@ Dictionaries via Hashing

@ Hashing Introduction

@ Separate Chaining

@ Probe Sequences

@ Cuckoo hashing

@ Hash Function Strategies

Separate Chaining

Simplest collision-resolution strategy: Each slot stores a bucket containing
0 or more KVPs. N

@ A bucket could be implemented by any dictionary realization (even
another hash table!).

@ The simplest approach is to use unsorted linked lists for buckets.
This is called collision resolution by separate chaining.

@ search(k): Look for key k in the list at T[h(k)].
Apply M TF-heuristic!

o insert(k,v): Add (k, v) to the front of the list at T[h(k)].

o delete(k): Perform a search, then delete from the linked list.

Chaining example

k mod 11

h(k)

M = 11,

O o)

“ “
LO || © AN || © ~ || — ™
< || P S || < <

O —«=H N M < W1 O M~ 0 o

insert(79)
h(79) = 2

Complexity of chaining
A [Ue AW nt" (owpu\-ua

Run-times: insert takes time O(1 L) il Tine
search and delete have run-time O(l + size of bucket T(h(k))).

@ [he average bucket-size isb% = Q1.
(v is also called the load factor.)

@ However, this does not imply that the average-case cost of search and
delete is O(1 + a).

(If all keys hash to the same slot, then the average bucket-size is still
«, but the operations take time ©(n) on average.)

@ Uniform Hashing Assumption: for any key k, and for any
j€40,...,M—1}, h(k) = j happens with probability 1/ M,
independently of where the other keys hash to.

(This depends on the input and how we choose the function ~ later.)

n—1 h
v other
keys and the average-case cost of search and delete is hence O(1 + «).

4
Q ;u gl
(o (‘QA .
- eo\,(ia(:.-z :‘1‘
\‘0\ x(;iw \ \
o
R
) -
=3
-l

fev

¥ wi.a) igl o
Prolo (2llil: Ml = D Probol LB\ £ ;0)=3)

-= b W_/
: \/ne

= 4.
b it o2 §° R)
L el aa?
5 3 (ouis'im 'iwa\v'ha 8- i%: Xi,!
SE(FL)= 2 EQ) = 2, L.

(-
i P IL T]

Load factor and re-hashing

@ For all collision resolution strategies, the run-time evaluation is done
in terms of the load factor o« = n/M.

@ We keep the load factor small by rehashing when needed:

» Keep track of n and M throughout operations
» |f o gets too large, create new (twice as big) hash-table, new
hash-function(s) and re-insert all items in the new table.

@ Rehashing costs @(M + n) but happens rarely enough that we can
ignore this term when amortlzmg over all operations.

@ We should also re-hash when « gets too small, so that M € O(n)
throughout, and the space is always ©(n). £ ./ ¢ /s

)
- - ' —-—
q ‘£ < l

o W
l.‘
Summary: |f we maintain o & @_(_1) then (under the uniform hashing
assumption) the average cost for hashing with chaining is O(1) and thE
space is ©(n). N UL, e B

L

Outline

€@ Dictionaries via Hashing
@ Hashing Introduction
@ Separate Chaining
@ Probe Sequences
@ Cuckoo hashing
@ Hash Function Strategies

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
(h(k,0), h(k,1), h(k,2),...) until an empty spot is found.

\-_—-"‘"/""———":.

S—

delete becomes problematic:

@ Cannot leave an empty spot behind; the next search might otherwise
not go far enough.

o lazy deletion: Mark spot as deleted (rather than NIL) and continue
searching past deleted spots.

Open addressing

Main idea: Avoid the links needed for chaining by permitting only one
item per slot, but allowing a key k to be in multiple slots.

search and insert follow a probe sequence of possible locations for key k:
(h(k,0), h(k,1), h(k,2),...) until an empty spot is found.

delete becomes problematic:

@ Cannot leave an empty spot behind; the next search might otherwise
not go far enough.

o lazy deletion: Mark spot as deleted (rather than NIL) and continue
searching past deleted spots.

Simplest method for open addressing: linear probing *
h(k,i) = (h(k) + i) mod M, for some hash function h.

Linear probing example

M =11, h(k,i) = (h(k)+ i) mod 11.

2\“‘\:‘& \MOJ ‘l
- 4?/\“1’\-: (QH-'L\ wod || .

N
L | O1

92

—
-
N
o

© 0 ~N O O b W N = O
& —

Linear probing example

M =11, h(k,i) = (h(k)+ i) mod 11.

—
N
o | O1

92

insert(84)

h(84,2) = 9

@ o I~
N

© 0 N O O dh W N
.Y —

-
-
N
o

Linear probing example

M =11, h(k,i) = (h(k)+ i) mod 11.

-
N
-

Y —

—
N
Qo | O1

O
No

delete(43)

h(43,0) = 10

© 0 ~N O O~ W N
N

@0
N

—
-

deleted

Linear probing example

M =11, h(k,i) = (h(k)+ i) mod 11.

-
NO
-

© 00 N O O d»H w N
.Y —

—
N
Q| O1

92

search(20)

h(20,2) =0
found

Qo | &
=

=
-

Probe sequence operations

probe-sequence::insert(T, (k, v))

1. for (j=0;j < M:j++T

2 if T|h(k,j)| is NIL or “deleted”

3 Tlh(k,j)] = (k,v)

4. return “success”

5 return “failure to insert” // need to re-hash

probe-sequence-search(T ,k)
1. for (j=0;j < M, j++)
if T|h(k,j)]is NIL
return “item not found”
else if T[h(k,j)] has key k
return T|h(k,j)] X
// ignore “deleted” and keep searching
return “item not found”

N O RN

Independent hash functions

Vk \l',\\ " 4,0,.."45 Pr.L(R«a(m:rt ond Q..(&\ .-:0\
= B oo Lialld) =1) - (’tauﬂu('l.\fb)

@ Some hashing methods require two hash functions hg, h;.

@ T[hese hash functions should be independent in the sense that the
random variables P(hg(k) = i) and P(hi(k) = j) are independent.

@ Using two modular hash-functions may often lead to dependencies.
@ Better idea: Use multiplicative method for second hash function:
h(k) = [M(kA — [kA])].
> A is some floating-point number
kA — | kA| computes fractional part of kA, which is in [0, 1)

Multiply with M to get floating-point number in [0, M)
Round down to get integer in {0,... , M — 1}

Knuth suggests A = ¢ = ¥5-1 ~ 0.618.

v v ¥

100
80

60

20

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

. 05’ ﬂ:lco &(1\/“: O..H

o
0
. ,rn
y
o
E
. .
o 0
oS
° O
o
o TR)
| =
© N =
o [~ <P
[
.
e
¢ ayl
(n =
. ™~
.\
o .

100
80
60
40
20

0

100

80

60

40

20

17.5

10.0 L.

Find

il

20.0

15.0

- R

0.0

Double Hashing

@ Assume we have two hash independent functions hg, hy.

@ Assume further that hi(k) # 0 and that hy(k) is relative prime with
the table-size M for all keys K. .

» Choose M prime.
> Modify standard hash-functions to ensure hi(k) # 0
E.g. modified multiplication method: h(k) =1+ |(M—1)(kA—|KkA|)]

—
L

@ Double hashing: open addressing with probe sequence

h(k,i) = ho(k) + i - hi(k) mod M

@ search, insert, delete work just like for linear probing,
but with this different probe sequence.

Double hashing example

M =].]., ho(k) — k mod 1]..), hl(k) — U.O((pk . L(ka)J + 1

o

1 45
insert(41) 3
ho(41) = 8
o(41) -
h(41,0) = 8

O© 00 ~N O O & W n
o
=7

|
45
_
2
-
I
48

—t
-
N
o

Double hashing example

M = 11,

insert(194)

ho(194) = 7
h(194, 0)
h1(194) =9
h(194, 1)
h(194, 2)

2

5
3

ho(k) = k mod 11,

— O
N
O

3

p—
O
o |2

© 0 ~N O O W N
N

e
45
194
2
I
I
483

-y
R
N
o

hi(k) = [10(¢k — |@k])] + 1

g 3

(%) -
A (-4 \ /

Outline

€@ Dictionaries via Hashing

@ Hashing Introduction

@ Separate Chaining

@ Probe Sequences

@ Cuckoo hashing

@ Hash Function Strategies

Cuckoo hashing

We use two independent hash functions hg, h1 and two tables Tg, T1.

Main idea: An item with key k can only be at Tglho(k)] or T1[h1(k)].

@ search and delete then take constant time.

@ insert always initially puts a new item into Tg[hg(k)]

If To[ho(k)] is occupied: “kick out” the other item, which we then
attempt to re-insert into its alternate position T7[h1(k)]

This may lead to a loop of “kicking out”. We detect this by aborting
after too many attempts.
In case of failure: rehash with*a larger M and new hash functions.

insert may be slow, but is expected to be constant time if the load factor
Is small enough.

Cuckoo hashing insertion

cuckoo::insert(k, v)

L i< 0

2. do at most 2n times:
if T[h()] is NIL

Tilhi(k)] < (k,v)

return “success’

swap((k, v), Ti[hi(k)])

h
H—l—i

return “failure to insert” // need to re-hash

XN O W

After 2n iterations, there definitely was a loop in the “kicking out”
sequence (why?)

In practice, one would stop the iterations much earlier already.

N

Cuckoo hashing example

M = 11, ho(k) = k mod 11, hy(k) = [11(pk — [k])]
insert(95)
44
| =0
k = 95
ho(k) =7
m(k) =7 >

O

0
1
2
3
4
5
6
7
3
2

O© 0 N O O & W N = O

O
No

T
-
I
-
59
.
_
-
2
-

-t
-
—
-

Cuckoo hashing example

M = 11, ho(k) = k mod 11, hi(k) = |11(pk — |pk])
insert(95)
o o
- — 1
e z
PR — s
eI fi
| e T Sl
7 7
 — e
9 9

Cuckoo hashing example

pk — [pk])]

= [11(

h1(k)

k mod 11,

ho(k)

M = 11,

< (@) LO N
< LO (@) (@)

o = AN MO < 10w O M~ 00 O

o —«=- AN MO < 1w O N~ 0 O

10

Cuckoo hashing example

ok — [pk])]

= [11(

h1(k)

k mod 11,

ho(k)

M = 11,

< O LO N
< AN (@) (@)

o = AN MO < 10w O M~ 00 O

51

o = AN MO < 1w O N~ 0 O

10

Cuckoo hashing example

hi(k) = [11(pk — |@k])]

k mod 11,

ho(k)

M = 11,

(@) LO

O «=- AN MO < 10w O M~ 00 O

< O

search(59)

o —«=- AN oM << 1w O N~ 00 O

NTe

10

10

(W if et e tnof 00 Jurt Wi
(e dtm“’ ks e \ooP

M We Ware w h'-"f \!1-- hu.
9 ‘o

- 3 ke wda Rk We TMA.\' k{. 3 T owas
S Wi will ol ow wdinte Loop.

Cuckoo hashing discussions

@ [he two hash-tables need not be of the same size.
@ Load factor a = n/(size of Tg + size of T1) = “/2,_1

@ One can argue: If the load factor «v is small enough then insertion has
O(1) expected run-time.

@ T his crucially requires o < %

There are many possible variations:
@ [he two hash-tables could be combined into one.

@ Be more flexible when inserting: Always consider both possible
positions.

@ Use k > 2 allowed locations (i.e., k hash-functions).

Complexity of open addressing strategies
For any open addressing scheme, we must have o« < 1 (why?).

Cuckoo hashing requires o« < 1/2.
K l'.S i.xtil Sﬂ -hoo

Hoad
Avg.-case costs: search insert search
(unsuccessful (successful)
. . 1 1 1
Linear Problng/ (1- a) 11— a) s
1 1 1 1
Double Hashing/ T s alog(l_a)
. L/ v 1/
chao Hashing (worst-case) | (1 —2a)2 | (worst-case)
/

>
Summary: All operations have O(1) average-case run-time if the
hash-function is uniform and « is kept sufficiently small.

But worst-case run-time is (usually) ©(n).

Outline

€@ Dictionaries via Hashing

@ Hashing Introduction

@ Separate Chaining

@ Probe Sequences

@ Cuckoo hashing

@ Hash Function Strategies

Choosing a good hash function

@ Goal: Satisfy uniform hashing assumption
(each hash-index is equally likely)

@ Proving this is usually impossible, as it requires knowledge of the
input distribution and the hash function distribution.
@ We can get good performance by choosing a hash-function that is

{ » unrelated to any possible patterns in the data, and
» depends on all parts of the key:.:

@ We saw two basic methods for integer keys:

» Modular method: h(k) = k mod M.
We should choose M to be a prime.
> Multiplicative method: h(k) = | M(kA — | kA])],
for some constant floating-point number A with 0 < A < 1.

Universal Hashing

Every hash function must do badly for some sequences of inputs:

o If the universe contains at least M keys, then there are n keys that
all hash to the same value. =2 n-vy ia-Mi26
@ For this set of keys, we have t”é(&fé?'g{ case.

Idea: Randomization! O |0- ‘:I
‘ ® o

@ When initializing or re-hashing, use as hash function

h(k) = ((ak +.b) mod p) mod ‘l-\i

m#

where p > M is a prime number, and a, b are random numbers in
{0,...p—1}, a #0.

@ Can prove: For any (fixed) numbers x # y, the probability of a
collision using this random function h is at most %

@ Therefore the expected run-time is O(1) if « is kept small enough.

We have again stbifted the performance from “bad input” to “bad luck”.

Multi-dimensional Data

What if the keys are multi-dimensional, such as strings in 2*7

Standard approach is to flatten string w to integer f(w) € N, e.g.

A-P-P-L-E — (65,80,80,76,69) (ASCIl) /
— 65R*+80R> +80R”* + 76R" + 68R" J
(for some radix R, e.g. R = 255)

We combine this with a modular hash function: h(w) = f(w) mod M
5 @ —
H ru:l, k:'lSY
To compute this in ‘O(|w|) time without overflow, use Horner's rule and
apply mod early. For exampe, h(APPLE) is

((((5Re 39 A4 80) A1) R+6D wod

= (((((((%E,meo) mod M) R+80) mod M) R+76) mod M) R+69) mod M
¢158%

%

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees
e O(log n) worst-case operation cost

@ Does not require any assumptions, special functions,
or known properties of input distribution

@ Predictable space usage (exactly n nodes)

@ Never need to rebuild the entire structure

@ Supports ordered dictionary operations (rank, select etc.)
Advantages of Hash Tables |

@ O(1) operations (if hashes well-spread and load factor small)

@ We can choose space-time tradeoff via load factor

@ Cuckoo hashing achieves O(1) worst-case for search & delete

